10 research outputs found

    Hajós and Ore constructions for digraphs

    Get PDF

    Colorings of graphs, digraphs, and hypergraphs

    Get PDF
    Brooks' Theorem ist eines der bekanntesten Resultate über Graphenfärbungen: Sei G ein zusammenhängender Graph mit Maximalgrad d. Ist G kein vollständiger Graph, so lassen sich die Ecken von G so mit d Farben färben, dass zwei benachbarte Ecken unterschiedlich gefärbt sind. In der vorliegenden Arbeit liegt der Fokus auf Verallgemeinerungen von Brooks Theorem für Färbungen von Hypergraphen und gerichteten Graphen. Eine Färbung eines Hypergraphen ist eine Färbung der Ecken so, dass keine Kante monochromatisch ist. Auf Hypergraphen erweitert wurde der Satz von Brooks von R.P. Jones. Im ersten Teil der Dissertation werden Möglichkeiten aufgezeigt, das Resultat von Jones weiter zu verallgemeinern. Kernstück ist ein Zerlegungsresultat: Zu einem Hypergraphen H und einer Folge f=(f_1,…,f_p) von Funktionen, welche von V(H) in die natürlichen Zahlen abbilden, wird untersucht, ob es eine Zerlegung von H in induzierte Unterhypergraphen H_1,…,H_p derart gibt, dass jedes H_i strikt f_i-degeneriert ist. Dies bedeutet, dass jeder Unterhypergraph H_i' von H_i eine Ecke v enthält, deren Grad in H_i' kleiner als f_i(v) ist. Es wird bewiesen, dass die Bedingung f_1(v)+…+f_p(v) \geq d_H(v) für alle v fast immer ausreichend für die Existenz einer solchen Zerlegung ist und gezeigt, dass sich die Ausnahmefälle gut charakterisieren lassen. Durch geeignete Wahl der Funktion f lassen sich viele bekannte Resultate ableiten, was im dritten Kapitel erörtert wird. Danach werden zwei weitere Verallgemeinerungen des Satzes von Jones bewiesen: Ein Theorem zu DP-Färbungen von Hypergraphen und ein Resultat, welches die chromatische Zahl eines Hypergraphen mit dessen maximalem lokalen Kantenzusammenhang verbindet. Der zweite Teil untersucht Färbungen gerichteter Graphen. Eine azyklische Färbung eines gerichteten Graphen ist eine Färbung der Eckenmenge des gerichteten Graphen sodass es keine monochromatischen gerichteten Kreise gibt. Auf dieses Konzept lassen sich viele klassische Färbungsresultate übertragen. Dazu zählt auch Brooks Theorem, wie von Mohar bewiesen wurde. Im siebten Kapitel werden DP-Färbungen gerichteter Graphen untersucht. Insbesondere erfolgt der Transfer von Mohars Theorem auf DP-Färbungen. Das darauffolgende Kapitel befasst sich mit kritischen gerichteten Graphen. Insbesondere werden Konstruktionen für diese angegeben und die gerichtete Version des Satzes von Hajós bewiesen.Brooks‘ Theorem is one of the most known results in graph coloring theory: Let G be a connected graph with maximum degree d >2. If G is not a complete graph, then there is a coloring of the vertices of G with d colors such that no two adjacent vertices get the same color. Based on Brooks' result, various research topics in graph coloring arose. Also, it became evident that Brooks' Theorem could be transferred to many other coloring-concepts. The present thesis puts its focus especially on two of those concepts: hypergraphs and digraphs. A coloring of a hypergraph H is a coloring of its vertices such that no edge is monochromatic. Brooks' Theorem for hypergraphs was obtained by R.P. Jones. In the first part of this thesis, we present several ways how to further extend Jones' theorem. The key element is a partition result, to which the second chapter is devoted. Given a hypergraph H and a sequence f=(f_1,…,f_p) of functions, we examine if there is a partition of HH into induced subhypergraphs H_1,…,H_p such that each of the H_i is strictly f_i-degenerate. This means that in each non-empty subhypergraph H_i' of H_i there is a vertex v having degree d_{H_i'}(v

    About equivalent interval colorings of weighted graphs

    Get PDF
    AbstractGiven a graph G=(V,E) with strictly positive integer weights ωi on the vertices i∈V, a k-interval coloring of G is a function I that assigns an interval I(i)⊆{1,…,k} of ωi consecutive integers (called colors) to each vertex i∈V. If two adjacent vertices x and y have common colors, i.e. I(i)∩I(j)≠0̸ for an edge [i,j] in G, then the edge [i,j] is said conflicting. A k-interval coloring without conflicting edges is said legal. The interval coloring problem (ICP) is to determine the smallest integer k, called interval chromatic number of G and denoted χint(G), such that there exists a legal k-interval coloring of G. For a fixed integer k, the k-interval graph coloring problem (k-ICP) is to determine a k-interval coloring of G with a minimum number of conflicting edges. The ICP and k-ICP generalize classical vertex coloring problems where a single color has to be assigned to each vertex (i.e., ωi=1 for all vertices i∈V).Two k-interval colorings I1 and I2 are said equivalent if there is a permutation π of the integers 1,…,k such that ℓ∈I1(i) if and only if π(ℓ)∈I2(i) for all vertices i∈V. As for classical vertex coloring, the efficiency of algorithms that solve the ICP or the k-ICP can be increased by avoiding considering equivalent k-interval colorings, assuming that they can be identified very quickly. To this purpose, we define and prove a necessary and sufficient condition for the equivalence of two k-interval colorings. We then show how a simple tabu search algorithm for the k-ICP can possibly be improved by forbidding the visit of equivalent solutions

    Teorema de Hajós para Coloração Ponderada

    Get PDF
    International audienceA coloração ótima dos vértices de um grafo é um dos problemas mais estudados em teoria dos grafos devido ao número de aplicações que o problema modela e à dificuldade inerente ao problema, pois determinar o número cromático de um grafo é NP-difícil. O Teorema de Hajós clássico [Hajós, 1961] mostra uma condição necessária e suficiente para que um grafo possua número cromático pelo menos k: o grafo deve possuir um subgrafo k-construtíıvel. Este, por sua vez, é obtido a partir do grafo completo de ordem k pela aplicação de um conjunto de operações bem determinadas. Neste artigo, provamos que a coloração ponderada [Guan and Zhu, 1997] admite também uma versão do Teorema de Hajós e, portanto, apresentamos uma condição necessária e suficiente para que o número cromático ponderado de um grafo seja pelo menos k, um inteiro qualquer

    Convex Algebraic Geometry Approaches to Graph Coloring and Stable Set Problems

    Get PDF
    The objective of a combinatorial optimization problem is to find an element that maximizes a given function defined over a large and possibly high-dimensional finite set. It is often the case that the set is so large that solving the problem by inspecting all the elements is intractable. One approach to circumvent this issue is by exploiting the combinatorial structure of the set (and possibly the function) and reformulate the problem into a familiar set-up where known techniques can be used to attack the problem. Some common solution methods for combinatorial optimization problems involve formulations that make use of Systems of Linear Equations, Linear Programs (LPs), Semidefinite Programs (SDPs), and more generally, Conic and Semi-algebraic Programs. Although, generality often implies flexibility and power in the formulations, in practice, an increase in sophistication usually implies a higher running time of the algorithms used to solve the problem. Despite this, for some combinatorial problems, it is hard to rule out the applicability of one formulation over the other. One example of this is the Stable Set Problem. A celebrated result of Lovász's states that it is possible to solve (to arbitrary accuracy) in polynomial time the Stable Set Problem for perfect graphs. This is achieved by showing that the Stable Set Polytope of a perfect graph is the projection of a slice of a Positive Semidefinite Cone of not too large dimension. Thus, the Stable Set Problem can be solved with the use of a reasonably sized SDP. However, it is unknown whether one can solve the same problem using a reasonably sized LP. In fact, even for simple classes of perfect graphs, such as Bipartite Graphs, we do not know the right order of magnitude of the minimum size LP formulation of the problem. Another example is Graph Coloring. In 2008 Jesús De Loera, Jon Lee, Susan Margulies and Peter Malkin proposed a technique to solve several combinatorial problems, including Graph Coloring Problems, using Systems of Linear Equations. These systems are obtained by reformulating the decision version of the combinatorial problem with a system of polynomial equations. By a theorem of Hilbert, known as Hilbert's Nullstellensatz, the infeasibility of this polynomial system can be determined by solving a (usually large) system of linear equations. The size of this system is an exponential function of a parameter dd that we call the degree of the Nullstellensatz Certificate. Computational experiments of De Loera et al. showed that the Nullstellensatz method had potential applications for detecting non-33-colorability of graphs. Even for known hard instances of graph coloring with up to two thousand vertices and tens of thousands of edges the method was useful. Moreover, all of these graphs had very small Nullstellensatz Certificates. Although, the existence of hard non-33-colorable graph examples for the Nullstellensatz approach are known, determining what combinatorial properties makes the Nullstellensatz approach effective (or ineffective) is wide open. The objective of this thesis is to amplify our understanding on the power and limitations of these methods, all of these falling into the umbrella of Convex Algebraic Geometry approaches, for combinatorial problems. We do this by studying the behavior of these approaches for Graph Coloring and Stable Set Problems. First, we study the Nullstellensatz approach for graphs having large girth and chromatic number. We show that that every non-kk-colorable graph with girth gg needs a Nullstellensatz Certificate of degree Ω(g)\Omega(g) to detect its non-kk-colorability. It is our general belief that the power of the Nullstellensatz method is tied with the interplay between local and global features of the encoding polynomial system. If a graph is locally kk-colorable, but globally non-kk-colorable, we suspect that it will be hard for the Nullstellensatz to detect the non-kk-colorability of the graph. Our results point towards that direction. Finally, we study the Stable Set Problem for dd-regular Bipartite Graphs having no C4C_4, i.e., having no cycle of length four. In 2017 Manuel Aprile \textit{et al.} showed that the Stable Set Polytope of the incidence graph Gd1G_{d-1} of a Finite Projective Plane of order d1d-1 (hence, dd-regular) does not admit an LP formulation with fewer than ln(d)dE(Gd1)\frac{\ln(d)}{d}|E(G_{d-1})| facets. Although, we did not manage to improve this lower bound for general dd-regular graphs, we show that any 44-regular bipartite graph GG having no C4C_4 does not admit an LP formulation with fewer than E(G)|E(G)| facets. In addition, we obtain computational results showing the E(G)|E(G)| lower bound also holds for the Finite Projective Plane G4G_4, a 55-regular graph. It is our belief that Aprile et al. bounds can be improved considerably

    Rooted structures in graphs: a project on Hadwiger's conjecture, rooted minors, and Tutte cycles

    Get PDF
    Hadwigers Vermutung ist eine der anspruchsvollsten Vermutungen für Graphentheoretiker und bietet eine weitreichende Verallgemeinerung des Vierfarbensatzes. Ausgehend von dieser offenen Frage der strukturellen Graphentheorie werden gewurzelte Strukturen in Graphen diskutiert. Eine Transversale einer Partition ist definiert als eine Menge, welche genau ein Element aus jeder Menge der Partition enthält und sonst nichts. Für einen Graphen G und eine Teilmenge T seiner Knotenmenge ist ein gewurzelter Minor von G ein Minor, der T als Transversale seiner Taschen enthält. Sei T eine Transversale einer Färbung eines Graphen, sodass es ein System von kanten-disjunkten Wegen zwischen allen Knoten aus T gibt; dann stellt sich die Frage, ob es möglich ist, die Existenz eines vollständigen, in T gewurzelten Minors zu gewährleisten. Diese Frage ist eng mit Hadwigers Vermutung verwoben: Eine positive Antwort würde Hadwigers Vermutung für eindeutig färbbare Graphen bestätigen. In dieser Arbeit wird ebendiese Fragestellung untersucht sowie weitere Konzepte vorgestellt, welche bekannte Ideen der strukturellen Graphentheorie um eine Verwurzelung erweitern. Beispielsweise wird diskutiert, inwiefern hoch zusammenhängende Teilmengen der Knotenmenge einen hoch zusammenhängenden, gewurzelten Minor erzwingen. Zudem werden verschiedene Ideen von Hamiltonizität in planaren und nicht-planaren Graphen behandelt.Hadwiger's Conjecture is one of the most tantalising conjectures for graph theorists and offers a far-reaching generalisation of the Four-Colour-Theorem. Based on this major issue in structural graph theory, this thesis explores rooted structures in graphs. A transversal of a partition is a set which contains exactly one element from each member of the partition and nothing else. Given a graph G and a subset T of its vertex set, a rooted minor of G is a minor such that T is a transversal of its branch set. Assume that a graph has a transversal T of one of its colourings such that there is a system of edge-disjoint paths between all vertices from T; it comes natural to ask whether such graphs contain a minor rooted at T. This question of containment is strongly related to Hadwiger's Conjecture; indeed, a positive answer would prove Hadwiger's Conjecture for uniquely colourable graphs. This thesis studies the aforementioned question and besides, presents several other concepts of attaching rooted relatedness to ideas in structural graph theory. For instance, whether a highly connected subset of the vertex set forces a highly connected rooted minor. Moreover, several ideas of Hamiltonicity in planar and non-planar graphs are discussed

    LIPIcs, Volume 248, ISAAC 2022, Complete Volume

    Get PDF
    LIPIcs, Volume 248, ISAAC 2022, Complete Volum

    Colouring on hereditary graph classes

    Get PDF
    The graph colouring problems ask if one can assign a colour from a palette of colour to every vertex of a graph so that any two adjacent vertices receive different colours. We call the resulting problem k-Colourability if the palette is of fixed size k, and Chromatic Number if the goal is to minimize the size of the palette. One of the earliest NP-completeness results states that 3-Colourability is NP-complete. Thereafter, numerous studies have been devoted to the graph colouring problems on special graph classes. For a fixed set of graphs H we denote F orb(H) by the set of graphs that exclude any graph H ∈ H as an induced subgraph. In this thesis, we explore the computational complexity of graph colouring problems on F orb(H) for different sets of H.In the first part of this thesis, we study k-Colourability on classes F orb(H) when H contains at most two graphs. We show that 4-Colourability and 5-Colourability are NPcomplete on F orb({P7}) and F orb({P6}), respectively, where Pt denotes a path of order t. These results leave open, for k ≥ 4, only the complexity of k-Colourability on F orb({Pt}) for k = 4 and t = 6. Secondly, we refine our NP-completeness results on k-Colourability to classes F orb({Cs, Pt}), where Cs denotes a cycle of length s. We prove new NP-completeness results for different combinations of values of k, s and t. Furthermore, we consider two common variants of the k-colouring problem, namely the list k-colouring problem and the pre-colouring extension of k-colouring problem. We show that in most cases these problems are also NP-complete on the class F orb({Cs, Pt}). Thirdly, we prove that the set of forbidden induced subgraph that characterizes the class of k-colourable (C4, P6)-free graphs is of finite size. For k ∈ {3, 4}, we obtain an explicit list of forbidden induced subgraphs and the first polynomial certifying algorithms for k-Colourability on F orb({C4, P6}).We also discuss one particular class F orb(H) when the size of H is infinite. We consider the intersection class of F orb({C4, C6, . . .}) and F orb(caps), where a cap is a graph obtained from an induced cycle by adding an additional vertex and making it adjacent to two adjacent vertices on the cycle. Our main result is a polynomial time 3/2-approximation algorithm for Chromatic Number on this class

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum
    corecore