9 research outputs found

    Colorings of graphs, digraphs, and hypergraphs

    Get PDF
    Brooks' Theorem ist eines der bekanntesten Resultate über Graphenfärbungen: Sei G ein zusammenhängender Graph mit Maximalgrad d. Ist G kein vollständiger Graph, so lassen sich die Ecken von G so mit d Farben färben, dass zwei benachbarte Ecken unterschiedlich gefärbt sind. In der vorliegenden Arbeit liegt der Fokus auf Verallgemeinerungen von Brooks Theorem für Färbungen von Hypergraphen und gerichteten Graphen. Eine Färbung eines Hypergraphen ist eine Färbung der Ecken so, dass keine Kante monochromatisch ist. Auf Hypergraphen erweitert wurde der Satz von Brooks von R.P. Jones. Im ersten Teil der Dissertation werden Möglichkeiten aufgezeigt, das Resultat von Jones weiter zu verallgemeinern. Kernstück ist ein Zerlegungsresultat: Zu einem Hypergraphen H und einer Folge f=(f_1,…,f_p) von Funktionen, welche von V(H) in die natürlichen Zahlen abbilden, wird untersucht, ob es eine Zerlegung von H in induzierte Unterhypergraphen H_1,…,H_p derart gibt, dass jedes H_i strikt f_i-degeneriert ist. Dies bedeutet, dass jeder Unterhypergraph H_i' von H_i eine Ecke v enthält, deren Grad in H_i' kleiner als f_i(v) ist. Es wird bewiesen, dass die Bedingung f_1(v)+…+f_p(v) \geq d_H(v) für alle v fast immer ausreichend für die Existenz einer solchen Zerlegung ist und gezeigt, dass sich die Ausnahmefälle gut charakterisieren lassen. Durch geeignete Wahl der Funktion f lassen sich viele bekannte Resultate ableiten, was im dritten Kapitel erörtert wird. Danach werden zwei weitere Verallgemeinerungen des Satzes von Jones bewiesen: Ein Theorem zu DP-Färbungen von Hypergraphen und ein Resultat, welches die chromatische Zahl eines Hypergraphen mit dessen maximalem lokalen Kantenzusammenhang verbindet. Der zweite Teil untersucht Färbungen gerichteter Graphen. Eine azyklische Färbung eines gerichteten Graphen ist eine Färbung der Eckenmenge des gerichteten Graphen sodass es keine monochromatischen gerichteten Kreise gibt. Auf dieses Konzept lassen sich viele klassische Färbungsresultate übertragen. Dazu zählt auch Brooks Theorem, wie von Mohar bewiesen wurde. Im siebten Kapitel werden DP-Färbungen gerichteter Graphen untersucht. Insbesondere erfolgt der Transfer von Mohars Theorem auf DP-Färbungen. Das darauffolgende Kapitel befasst sich mit kritischen gerichteten Graphen. Insbesondere werden Konstruktionen für diese angegeben und die gerichtete Version des Satzes von Hajós bewiesen.Brooks‘ Theorem is one of the most known results in graph coloring theory: Let G be a connected graph with maximum degree d >2. If G is not a complete graph, then there is a coloring of the vertices of G with d colors such that no two adjacent vertices get the same color. Based on Brooks' result, various research topics in graph coloring arose. Also, it became evident that Brooks' Theorem could be transferred to many other coloring-concepts. The present thesis puts its focus especially on two of those concepts: hypergraphs and digraphs. A coloring of a hypergraph H is a coloring of its vertices such that no edge is monochromatic. Brooks' Theorem for hypergraphs was obtained by R.P. Jones. In the first part of this thesis, we present several ways how to further extend Jones' theorem. The key element is a partition result, to which the second chapter is devoted. Given a hypergraph H and a sequence f=(f_1,…,f_p) of functions, we examine if there is a partition of HH into induced subhypergraphs H_1,…,H_p such that each of the H_i is strictly f_i-degenerate. This means that in each non-empty subhypergraph H_i' of H_i there is a vertex v having degree d_{H_i'}(v

    Novel procedures for graph edge-colouring

    Get PDF
    Orientador: Dr. Renato CarmoCoorientador: Dr. André Luiz Pires GuedesTese (doutorado) - Universidade Federal do Paraná, Setor de Ciências Exatas, Programa de Pós-Graduação em Informática. Defesa : Curitiba, 05/12/2018Inclui referências e índiceÁrea de concentração: Ciência da ComputaçãoResumo: O índice cromático de um grafo G é o menor número de cores necessário para colorir as arestas de G de modo que não haja duas arestas adjacentes recebendo a mesma cor. Pelo célebre Teorema de Vizing, o índice cromático de qualquer grafo simples G ou é seu grau máximo , ou é ? + 1, em cujo caso G é dito Classe 1 ou Classe 2, respectivamente. Computar uma coloração de arestas ótima de um grafo ou simplesmente determinar seu índice cromático são problemas NP-difíceis importantes que aparecem em aplicações notáveis, como redes de sensores, redes ópticas, controle de produção, e jogos. Neste trabalho, nós apresentamos novos procedimentos de tempo polinomial para colorir otimamente as arestas de grafos pertences a alguns conjuntos grandes. Por exemplo, seja X a classe dos grafos cujos maiorais (vértices de grau ?) possuem soma local de graus no máximo ?2 ?? (entendemos por 'soma local de graus' de um vértice x a soma dos graus dos vizinhos de x). Nós mostramos que quase todo grafo está em X e, estendendo o procedimento de recoloração que Vizing usou na prova para seu teorema, mostramos que todo grafo em X é Classe 1. Nós também conseguimos resultados em outras classes de grafos, como os grafos-junção, os grafos arco-circulares, e os prismas complementares. Como um exemplo, nós mostramos que um prisma complementar só pode ser Classe 2 se for um grafo regular distinto do K2. No que diz respeito aos grafos-junção, nós mostramos que se G1 e G2 são grafos disjuntos tais que |V(G1)| _ |V(G2)| e ?(G1) _ ?(G2), e se os maiorais de G1 induzem um grafo acíclico, então o grafo-junção G1 ?G2 é Classe 1. Além desses resultados em coloração de arestas, apresentamos resultados parciais em coloração total de grafos-junção, de grafos arco-circulares, e de grafos cobipartidos, bem como discutimos um procedimento de recoloração para coloração total. Palavras-chave: Coloração de grafos e hipergrafos (MSC 05C15). Algoritmos de grafos (MSC 05C85). Teoria dos grafos em relação à Ciência da Computação (MSC 68R10). Graus de vértices (MSC 05C07). Operações de grafos (MSC 05C76).Abstract: The chromatic index of a graph G is the minimum number of colours needed to colour the edges of G in a manner that no two adjacent edges receive the same colour. By the celebrated Vizing's Theorem, the chromatic index of any simple graph G is either its maximum degree ? or it is ? + 1, in which case G is said to be Class 1 or Class 2, respectively. Computing an optimal edge-colouring of a graph or simply determining its chromatic index are important NP-hard problems which appear in noteworthy applications, like sensor networks, optical networks, production control, and games. In this work we present novel polynomial-time procedures for optimally edge-colouring graphs belonging to some large sets of graphs. For example, let X be the class of the graphs whose majors (vertices of degree ?) have local degree sum at most ?2 ? ? (by 'local degree sum' of a vertex x we mean the sum of the degrees of the neighbours of x). We show that almost every graph is in X and, by extending the recolouring procedure used by Vizing's in the proof for his theorem, we show that every graph in X is Class 1. We further achieve results in other graph classes, such as join graphs, circular-arc graphs, and complementary prisms. For instance, we show that a complementary prism can be Class 2 only if it is a regular graph distinct from the K2. Concerning join graphs, we show that if G1 and G2 are disjoint graphs such that |V(G1)| _ |V(G2)| and ?(G1) _ ?(G2), and if the majors of G1 induce an acyclic graph, then the join graph G1 ?G2 is Class 1. Besides these results on edge-colouring, we present partial results on total colouring join graphs, cobipartite graphs, and circular-arc graphs, as well as a discussion on a recolouring procedure for total colouring. Keywords: Colouring of graphs and hypergraphs (MSC 05C15). Graph algorithms (MSC 05C85). Graph theory in relation to Computer Science (MSC 68R10). Vertex degrees (MSC 05C07). Graph operations (MSC 05C76)

    Colouring on hereditary graph classes

    Get PDF
    The graph colouring problems ask if one can assign a colour from a palette of colour to every vertex of a graph so that any two adjacent vertices receive different colours. We call the resulting problem k-Colourability if the palette is of fixed size k, and Chromatic Number if the goal is to minimize the size of the palette. One of the earliest NP-completeness results states that 3-Colourability is NP-complete. Thereafter, numerous studies have been devoted to the graph colouring problems on special graph classes. For a fixed set of graphs H we denote F orb(H) by the set of graphs that exclude any graph H ∈ H as an induced subgraph. In this thesis, we explore the computational complexity of graph colouring problems on F orb(H) for different sets of H.In the first part of this thesis, we study k-Colourability on classes F orb(H) when H contains at most two graphs. We show that 4-Colourability and 5-Colourability are NPcomplete on F orb({P7}) and F orb({P6}), respectively, where Pt denotes a path of order t. These results leave open, for k ≥ 4, only the complexity of k-Colourability on F orb({Pt}) for k = 4 and t = 6. Secondly, we refine our NP-completeness results on k-Colourability to classes F orb({Cs, Pt}), where Cs denotes a cycle of length s. We prove new NP-completeness results for different combinations of values of k, s and t. Furthermore, we consider two common variants of the k-colouring problem, namely the list k-colouring problem and the pre-colouring extension of k-colouring problem. We show that in most cases these problems are also NP-complete on the class F orb({Cs, Pt}). Thirdly, we prove that the set of forbidden induced subgraph that characterizes the class of k-colourable (C4, P6)-free graphs is of finite size. For k ∈ {3, 4}, we obtain an explicit list of forbidden induced subgraphs and the first polynomial certifying algorithms for k-Colourability on F orb({C4, P6}).We also discuss one particular class F orb(H) when the size of H is infinite. We consider the intersection class of F orb({C4, C6, . . .}) and F orb(caps), where a cap is a graph obtained from an induced cycle by adding an additional vertex and making it adjacent to two adjacent vertices on the cycle. Our main result is a polynomial time 3/2-approximation algorithm for Chromatic Number on this class

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    LIPIcs, Volume 248, ISAAC 2022, Complete Volume

    Get PDF
    LIPIcs, Volume 248, ISAAC 2022, Complete Volum

    Hajós' theorem for list colorings of hypergraphs

    No full text
    A well-known theorem of Hajós claims that every graph with chromathic number greater than k can be constructed from disjoint copies of the complete graph Kk+1K_{k+1} by repeated application of three simple operations. This classical result has been extended in 1978 to colorings of hypergraphs by C. Benzaken and in 1996 to list-colorings of graphs by S. Gravier. In this note, we capture both variations to extend Hajós' theorem to list-colorings of hypergraphs
    corecore