1,181 research outputs found

    A feasibility approach for constructing combinatorial designs of circulant type

    Get PDF
    In this work, we propose an optimization approach for constructing various classes of circulant combinatorial designs that can be defined in terms of autocorrelations. The problem is formulated as a so-called feasibility problem having three sets, to which the Douglas-Rachford projection algorithm is applied. The approach is illustrated on three different classes of circulant combinatorial designs: circulant weighing matrices, D-optimal matrices, and Hadamard matrices with two circulant cores. Furthermore, we explicitly construct two new circulant weighing matrices, a CW(126,64)CW(126,64) and a CW(198,100)CW(198,100), whose existence was previously marked as unresolved in the most recent version of Strassler's table

    A survey of complex generalized weighing matrices and a construction of quantum error-correcting codes

    Full text link
    Some combinatorial designs, such as Hadamard matrices, have been extensively researched and are familiar to readers across the spectrum of Science and Engineering. They arise in diverse fields such as cryptography, communication theory, and quantum computing. Objects like this also lend themselves to compelling mathematics problems, such as the Hadamard conjecture. However, complex generalized weighing matrices, which generalize Hadamard matrices, have not received anything like the same level of scrutiny. Motivated by an application to the construction of quantum error-correcting codes, which we outline in the latter sections of this paper, we survey the existing literature on complex generalized weighing matrices. We discuss and extend upon the known existence conditions and constructions, and compile known existence results for small parameters. Some interesting quantum codes are constructed to demonstrate their value.Comment: 33 pages including appendi
    • 

    corecore