63 research outputs found

    Massive MIMO systems at millimeter-wave. Beamforming design and channel estimation

    Get PDF
    The usage of the millimeter wave (MMW) band in the 5th generation (5G) networks relies on beamforming to compensate the strong path-loss suffered at higher frequencies. In this work we propose a novel channel estimation method for MMW systems where both transmitter and receiver are equipped with less radio frequency chains than antennas and implement hybrid analog-digital beamforming

    Keilaavan millimetriaaltoradiolinkin suuntaaminen ja seuraaminen

    Get PDF
    In order to provide high-throughput mobile broadband in a dense urban information society, upcoming cellular networks will finally employ the under-utilized millimeter-wave (mmW) frequencies. The challenging mmW radio environment, however, necessitates massive cell densification with wireless backhauling using very directional links. This thesis investigates how these links between access points may be aligned efficiently, and how alignment reflects the network organization. The work provides a thorough presentation of different high-level aspects and background information required when designing a mmW small cell system. In terms of alignment functionality, both automatic link establishment and proactive tracking are considered. Additionally, the presentation includes an overview of beam steerable antennas, mmW propagation in urban environments, and network organization. The thesis further specifies requirements, proposes possible approaches and compares those with existing implementations. Most of existing mmW beam alignment solutions are intended for short-range indoor communications and do not address the issues in cellular systems. While existing functionality considers only a single link between two devices, efficient design should consider both the entire network and the underlying phenomena. The devices should further exploit the existing network infrastructure, location and orientation information, and the concepts of machine learning. Even though the world has recently seen advancements in the related fields, there is still much work to be done before commercial deployment is possible.Seuraavan sukupolven matkaviestinjärjestelmien erittäin nopeissa datayhteyksissä tullaan hyödyntämään millimetriaaltoteknologiaa. Näillä taajuuksilla radioympäristö on kuitenkin hyvin haastava, mikä edellyttää verkon solutiheyden moninkertaistamista, täysin langattomia tukiasemia ja erittäin suuntaavia antenneja. Tässä diplomityössä tutkitaan eri keinoja kuinka tukiasemien väliset linkit kohdistetaan tehokkaasti, ja miten se vaikuttaa verkon rakenteeseen ja hallintaan. Työ tarjoaa kattavan taustaselvityksen mm-aaltosoluverkon toteuttamiseen tarvittavista asioista. Keilanohjausta tarkastellaan sekä verkon automaattisen laajentamisen että kohteen aktiivisen seurauksen kannalta. Tämän lisäksi työssä tutkitaan keilattavia antenneja, mm-aaltojen etenemistä kaupunkiympäristöissä ja verkkorakennetta. Näiden lisäksi työssä rajataan edellytykset, esitetään mahdollisia ratkaisuja, ja vertaillaan näitä olemassa oleviin toteutuksiin. Nykyiset keilaustoteutukset ovat pääasiassa suunniteltu lyhyen kantaman sisäyhteyksille, eivätkä siten vastaa ongelman asettelua. Aikaisempi toiminnallisuus keskittyy yhteen ainoaan linkkiin vaikka tehokas toteutus huomioisi koko järjestelmän kohdistusongelman fysikaalista perustaa unohtamatta. Verkkolaitteiden tulisi hyödyntää olemassa olevaa radioverkkoa, sekä paikka- että suuntatietoja, ja koneoppimisen keinoja. Vaikka aiheeseen liittyvä teknologia on kehittynyt viime vuosina harppauksin, mm-aaltosoluverkot ovat kaikkea muuta kuin valmiita markkinoille

    The Application of Spatial Complementary Code Keying in Point-to-Point MIMO Wireless Communications Systems

    Get PDF

    Unified Framework for Multicarrier and Multiple Access based on Generalized Frequency Division Multiplexing

    Get PDF
    The advancements in wireless communications are the key-enablers of new applications with stringent requirements in low-latency, ultra-reliability, high data rate, high mobility, and massive connectivity. Diverse types of devices, ranging from tiny sensors to vehicles, with different capabilities need to be connected under various channel conditions. Thus, modern connectivity and network techniques at all layers are essential to overcome these challenges. In particular, the physical layer (PHY) transmission is required to achieve certain link reliability, data rate, and latency. In modern digital communications systems, the transmission is performed by means of a digital signal processing module that derives analog hardware. The performance of the analog part is influenced by the quality of the hardware and the baseband signal denoted as waveform. In most of the modern systems such as fifth generation (5G) and WiFi, orthogonal frequency division multiplexing (OFDM) is adopted as a favorite waveform due to its low-complexity advantages in terms of signal processing. However, OFDM requires strict requirements on hardware quality. Many devices are equipped with simplified analog hardware to reduce the cost. In this case, OFDM does not work properly as a result of its high peak-to-average power ratio (PAPR) and sensitivity to synchronization errors. To tackle these problems, many waveforms design have been recently proposed in the literature. Some of these designs are modified versions of OFDM or based on conventional single subcarrier. Moreover, multicarrier frameworks, such as generalized frequency division multiplexing (GFDM), have been proposed to realize varieties of conventional waveforms. Furthermore, recent studies show the potential of using non-conventional waveforms for increasing the link reliability with affordable complexity. Based on that, flexible waveforms and transmission techniques are necessary to adapt the system for different hardware and channel constraints in order to fulfill the applications requirements while optimizing the resources. The objective of this thesis is to provide a holistic view of waveforms and the related multiple access (MA) techniques to enable efficient study and evaluation of different approaches. First, the wireless communications system is reviewed with specific focus on the impact of hardware impairments and the wireless channel on the waveform design. Then, generalized model of waveforms and MA are presented highlighting various special cases. Finally, this work introduces low-complexity architectures for hardware implementation of flexible waveforms. Integrating such designs with software-defined radio (SDR) contributes to the development of practical real-time flexible PHY.:1 Introduction 1.1 Baseband transmission model 1.2 History of multicarrier systems 1.3 The state-of-the-art waveforms 1.4 Prior works related to GFDM 1.5 Objective and contributions 2 Fundamentals of Wireless Communications 2.1 Wireless communications system 2.2 RF transceiver 2.2.1 Digital-analogue conversion 2.2.2 QAM modulation 2.2.3 Effective channel 2.2.4 Hardware impairments 2.3 Waveform aspects 2.3.1 Single-carrier waveform 2.3.2 Multicarrier waveform 2.3.3 MIMO-Waveforms 2.3.4 Waveform performance metrics 2.4 Wireless Channel 2.4.1 Line-of-sight propagation 2.4.2 Multi path and fading process 2.4.3 General baseband statistical channel model 2.4.4 MIMO channel 2.5 Summary 3 Generic Block-based Waveforms 3.1 Block-based waveform formulation 3.1.1 Variable-rate multicarrier 3.1.2 General block-based multicarrier model 3.2 Waveform processing techniques 3.2.1 Linear and circular filtering 3.2.2 Windowing 3.3 Structured representation 3.3.1 Modulator 3.3.2 Demodulator 3.3.3 MIMO Waveform processing 3.4 Detection 3.4.1 Maximum-likelihood detection 3.4.2 Linear detection 3.4.3 Iterative Detection 3.4.4 Numerical example and insights 3.5 Summary 4 Generic Multiple Access Schemes 57 4.1 Basic multiple access and multiplexing schemes 4.1.1 Infrastructure network system model 4.1.2 Duplex schemes 4.1.3 Common multiplexing and multiple access schemes 4.2 General multicarrier-based multiple access 4.2.1 Design with fixed set of pulses 4.2.2 Computational model 4.2.3 Asynchronous multiple access 4.3 Summary 5 Time-Frequency Analyses of Multicarrier 5.1 General time-frequency representation 5.1.1 Block representation 5.1.2 Relation to Zak transform 5.2 Time-frequency spreading 5.3 Time-frequency block in LTV channel 5.3.1 Subcarrier and subsymbol numerology 5.3.2 Processing based on the time-domain signal 5.3.3 Processing based on the frequency-domain signal 5.3.4 Unified signal model 5.4 summary 6 Generalized waveforms based on time-frequency shifts 6.1 General time-frequency shift 6.1.1 Time-frequency shift design 6.1.2 Relation between the shifted pulses 6.2 Time-frequency shift in Gabor frame 6.2.1 Conventional GFDM 6.3 GFDM modulation 6.3.1 Filter bank representation 6.3.2 Block representation 6.3.3 GFDM matrix structure 6.3.4 GFDM demodulator 6.3.5 Alternative interpretation of GFDM 6.3.6 Orthogonal modulation and GFDM spreading 6.4 Summary 7 Modulation Framework: Architectures and Applications 7.1 Modem architectures 7.1.1 General modulation matrix structure 7.1.2 Run-time flexibility 7.1.3 Generic GFDM-based architecture 7.1.4 Flexible parallel multiplications architecture 7.1.5 MIMO waveform architecture 7.2 Extended GFDM framework 7.2.1 Architectures complexity and flexibility analysis 7.2.2 Number of multiplications 7.2.3 Hardware analysis 7.3 Applications of the extended GFDM framework 7.3.1 Generalized FDMA 7.3.2 Enchantment of OFDM system 7.4 Summary 7 Conclusions and Future work
    corecore