151 research outputs found

    Constructions for orthogonal designs using signed group orthogonal designs

    Full text link
    Craigen introduced and studied signed group Hadamard matrices extensively and eventually provided an asymptotic existence result for Hadamard matrices. Following his lead, Ghaderpour introduced signed group orthogonal designs and showed an asymptotic existence result for orthogonal designs and consequently Hadamard matrices. In this paper, we construct some interesting families of orthogonal designs using signed group orthogonal designs to show the capability of signed group orthogonal designs in generation of different types of orthogonal designs.Comment: To appear in Discrete Mathematics (Elsevier). No figure

    Cohomology-Developed Matrices -- constructing families of weighing matrices and automorphism actions

    Full text link
    The aim of this work is to construct families of weighing matrices via their automorphism group action. This action is determined from the 0,1,20,1,2-cohomology groups of the underlying abstract group. As a consequence, some old and new families of weighing matrices are constructed. These include the Paley Conference, the Projective-Space, the Grassmannian, and the Flag-Variety weighing matrices. We develop a general theory relying on low dimensional group-cohomology for constructing automorphism group actions, and in turn obtain structured matrices that we call \emph{Cohomology-Developed matrices}. This "Cohomology-Development" generalizes the Cocyclic and Group Developments. The Algebraic structure of modules of Cohomology-Developed matrices is discussed, and an orthogonality result is deduced. We also use this algebraic structure to define the notion of \emph{Quasiproducts}, which is a generalization of the Kronecker-product

    A survey of complex generalized weighing matrices and a construction of quantum error-correcting codes

    Full text link
    Some combinatorial designs, such as Hadamard matrices, have been extensively researched and are familiar to readers across the spectrum of Science and Engineering. They arise in diverse fields such as cryptography, communication theory, and quantum computing. Objects like this also lend themselves to compelling mathematics problems, such as the Hadamard conjecture. However, complex generalized weighing matrices, which generalize Hadamard matrices, have not received anything like the same level of scrutiny. Motivated by an application to the construction of quantum error-correcting codes, which we outline in the latter sections of this paper, we survey the existing literature on complex generalized weighing matrices. We discuss and extend upon the known existence conditions and constructions, and compile known existence results for small parameters. Some interesting quantum codes are constructed to demonstrate their value.Comment: 33 pages including appendi

    Free nilpotent and HH-type Lie algebras. Combinatorial and orthogonal designs

    Full text link
    The aim of our paper is to construct pseudo HH-type algebras from the covering free nilpotent two-step Lie algebra as the quotient algebra by an ideal. We propose an explicit algorithm of construction of such an ideal by making use of a non-degenerate scalar product. Moreover, as a bypass result, we recover the existence of a rational structure on pseudo HH-type algebras, which implies the existence of lattices on the corresponding pseudo HH-type Lie groups. Our approach substantially uses combinatorics and reveals the interplay of pseudo HH-type algebras with combinatorial and orthogonal designs. One of the key tools is the family of Hurwitz-Radon orthogonal matrices

    Balanced generalized weighing matrices and their applications

    Get PDF
    Balanced generalized weighing matrices include well-known classical combinatorial objects such as Hadamard matrices and conference matrices; moreover, particular classes of BGW -matrices are equivalent to certain relative difference sets. BGW -matrices admit an interesting geometrical interpretation, and in this context they generalize notions like projective planes admitting a full elation or homology group. After surveying these basic connections, we will focus attention on proper BGW -matrices; thus we will not give any systematic treatment of generalized Hadamard matrices, which are the subject of a large area of research in their own right. In particular, we will discuss what might be called the classical parameter series. Here the nicest examples are closely related to perfect codes and to some classical relative difference sets associated with affine geometries; moreover, the matrices in question can be characterized as the unique (up to equivalence) BGW -matrices for the given parameters with minimum q-rank.One can also obtain a wealth of monomially inequivalent examples and deter  mine the q-ranks of all these matrices by exploiting a connection with linear shift register sequences
    • …
    corecore