2,657 research outputs found

    Mitigating Denial-of-Service Attacks on VoIP Environment

    Get PDF
    IP telephony refers to the use of Internet protocols to provide voice, video, and data in one integrated service over LANs, BNs, MANs, not WANs. VoIP provides three key benefits compared to traditional voice telephone services. First, it minimizes the need fro extra wiring in new buildings. Second, it provides easy movement of telephones and the ability of phone numbers to move with the individual. Finally, VoIP is generally cheaper to operate because it requires less network capacity to transmit the same voice telephone call over an increasingly digital telephone network (FitzGerald & Dennis, 2007 p. 519). Unfortunately, benefits of new electronic communications come with proportionate risks. Companies experience losses resulting from attacks on data networks. There are direct losses like economic theft, theft of trade secrets and digital data, as well as indirect losses that include loss of sales, loss of competitive advantage etc. The companies need to develop their security policies to protect their businesses. But the practice of information security has become more complex than ever. The research paper will be about the major DoS threats the company’s VoIP environment can experience as well as best countermeasures that can be used to prevent them and make the VoIP environment and, therefore, company’s networking environment more secure

    AEGIS: Validating Execution Behavior of Controller Applications in Software-Defined Networks

    Get PDF
    The software-defined network (SDN) controller provides an application programming interface (API) for network applications and controller modules. Malicious applications and network attackers can misuse these APIs to cause outbreaks on the controller. The controller is the heart of the SDN and should be secured from such API misuse scenarios and network attacks. Most of the prior research in security for SDN controllers focuses on a defense mechanism for a particular attack scenario that requires changes in the controller code. This research proposes dynamic access control and a policy engine-based approach for protecting the SDN controller from network attacks and application bugs, thus defending against the misuse of the controller APIs. The proposed AEGIS protects controller APIs and defines a set of access, semantic, syntactic and communication policy rules and a permission set for accessing controller APIs. It utilizes the traditional API hooking technique to control API usage. We generated various attack scenarios that included application bugs and network attacks on the Floodlight SDN controller and showed that applying AEGIS secured the Floodlight controller APIs and hence protected them from network attacks and application bugs. Finally, we discuss performance comparison tests of the new AEGIS controller implementation for memory usage, API execution time and boot-up time and conclude that AEGIS effectively protects the SDN controller for trustworthy operations

    A survey of denial-of-service and distributed denial of service attacks and defenses in cloud computing

    Get PDF
    Cloud Computing is a computingmodel that allows ubiquitous, convenient and on-demand access to a shared pool of highly configurable resources (e.g., networks, servers, storage, applications and services). Denial-of-Service (DoS) and Distributed Denial-of-Service (DDoS) attacks are serious threats to the Cloud services’ availability due to numerous new vulnerabilities introduced by the nature of the Cloud, such as multi-tenancy and resource sharing. In this paper, new types of DoS and DDoS attacks in Cloud Computing are explored, especially the XML-DoS and HTTP-DoS attacks, and some possible detection and mitigation techniques are examined. This survey also provides an overview of the existing defense solutions and investigates the experiments and metrics that are usually designed and used to evaluate their performance, which is helpful for the future research in the domain

    A Study on Security Attributes of Software-Defined Wide Area Network

    Get PDF
    For organizations to communicate important data across various branches, a reliable Wide Area Network (WAN) is important. With the increase of several factors such as usage of cloud services, WAN bandwidth demand, cost of leased lines, complexity in building/managing WAN and changing business needs led to need of next generation WAN. Software-defined wide area network (SD- WAN) is an emerging trend in today’s networking world as it simplifies management of network and provides seamless integration with the cloud. Compared to Multiprotocol Label Switching (MPLS) majorly used in traditional WAN architecture, SD-WAN incurs less cost, highly secure and offers great performance. This paper will mainly focus to investigate this next-generation WAN’s security attributes as security plays a crucial role in SD-WAN implementation. The goal of the paper is to analyze SD-WAN security by applying principles of CIA triad principle. Comparison of SD-WAN products offered by three different vendors in SD-WAN market with respect to its security is another important area that will be covered in this paper

    Centralized prevention of denial of service attacks

    Full text link
    The world has come to depend on the Internet at an increasing rate for communication, e-commerce, and many other essential services. As such, the Internet has become an integral part of the workings of society at large. This has lead to an increased vulnerability to remotely controlled disruption of vital commercial and government operations---with obvious implications. This disruption can be caused by an attack on one or more specific networks which will deny service to legitimate users or an attack on the Internet itself by creating large amounts of spurious traffic (which will deny services to many or all networks). Individual organizations can take steps to protect themselves but this does not solve the problem of an Internet wide attack. This thesis focuses on an analysis of the different types of Denial of Service attacks and suggests an approach to prevent both categories by centralized detection and limitation of excessive packet flows
    • …
    corecore