177,471 research outputs found

    Consequences of Symmetries on the Analysis and Construction of Turbulence Models

    Get PDF
    Since they represent fundamental physical properties in turbulence (conservation laws, wall laws, Kolmogorov energy spectrum, ...), symmetries are used to analyse common turbulence models. A class of symmetry preserving turbulence models is proposed. This class is refined such that the models respect the second law of thermodynamics. Finally, an example of model belonging to the class is numerically tested.Comment: Published in SIGMA (Symmetry, Integrability and Geometry: Methods and Applications) at http://www.emis.de/journals/SIGMA

    Towards a Simple Model of Compressible Alfvenic Turbulence

    Get PDF
    A simple model collisionless, dissipative, compressible MHD (Alfvenic) turbulence in a magnetized system is investigated. In contrast to more familiar paradigms of turbulence, dissipation arises from Landau damping, enters via nonlinearity, and is distributed over all scales. The theory predicts that two different regimes or phases of turbulence are possible, depending on the ratio of steepening to damping coefficient (m_1/m_2). For strong damping (|m_1/m_2|<1), a regime of smooth, hydrodynamic turbulence is predicted. For |m_1/m_2|>1, steady state turbulence does not exist in the hydrodynamic limit. Rather, spikey, small scale structure is predicted.Comment: 6 pages, one figure, REVTeX; this version to be published in PRE. For related papers, see http://sdphpd.ucsd.edu/~medvedev/papers.htm

    HTTP Turbulence

    Get PDF
    In this paper, we consider a set of HTTP flows using TCP over a common drop-tail link to download files. After each download, a flow waits for a random think time before requesting the download of another file, whose size is also random. When a flow is active its throughput is increasing with time according to the additive increase rule, but if it suffers losses created when the total transmission rate of the flows exceeds the link rate, its transmission rate is decreased. The throughput obtained by a flow, and the consecutive time to download one file are then given as the consequence of the interaction of all the flows through their total transmission rate and the link's behavior. We study the mean-field model obtained by letting the number of flows go to infinity. This mean-field limit may have two stable regimes : one without congestion in the link, in which the density of transmission rate can be explicitly described, the other one with periodic congestion epochs, where the inter-congestion time can be characterized as the solution of a fixed point equation, that we compute numerically, leading to a density of transmission rate given by as the solution of a Fredholm equation. It is shown that for certain values of the parameters (more precisely when the link capacity per user is not significantly larger than the load per user), each of these two stable regimes can be reached depending on the initial condition. This phenomenon can be seen as an analogue of turbulence in fluid dynamics: for some initial conditions, the transfers progress in a fluid and interaction-less way; for others, the connections interact and slow down because of the resulting fluctuations, which in turn perpetuates interaction forever, in spite of the fact that the load per user is less than the capacity per user. We prove that this phenomenon is present in the Tahoe case and both the numerical method that we develop and simulations suggest that it is also be present in the Reno case. It translates into a bi-stability phenomenon for the finite population model within this range of parameters. This research was supported in part by the "Opération Stratégique Conjointe" Alcatel-INRIA entitled "End to End Analysis of IP Traffic"

    Cavitating Langmuir Turbulence in the Terrestrial Aurora

    Get PDF
    Langmuir cavitons have been artificially produced in the earth's ionosphere, but evidence of naturally-occurring cavitation has been elusive. By measuring and modeling the spectra of electrostatic plasma modes, we show that natural cavitating, or strong, Langmuir turbulence does occur in the ionosphere, via a process in which a beam of auroral electrons drives Langmuir waves, which in turn produce cascading Langmuir and ion-acoustic excitations and cavitating Langmuir turbulence. The data presented here are the first direct evidence of cavitating Langmuir turbulence occurring naturally in any space or astrophysical plasma.Comment: 4 pages, 4 figures, published in PRL on 9 March 2012 http://link.aps.org/doi/10.1103/PhysRevLett.108.10500

    Kinetic Energy Decay Rates of Supersonic and Super-Alfvenic Turbulence in Star-Forming Clouds

    Get PDF
    We present numerical studies of compressible, decaying turbulence, with and without magnetic fields, with initial rms Alfven and Mach numbers ranging up to five, and apply the results to the question of the support of star-forming interstellar clouds of molecular gas. We find that, in 1D, magnetized turbulence actually decays faster than unmagnetized turbulence. In all the regimes that we have studied 3D turbulence-super-Alfvenic, supersonic, sub-Alfvenic, and subsonic-the kinetic energy decays as (t-t0)^(-x), with 0.85 < x < 1.2. We compared results from two entirely different algorithms in the unmagnetized case, and have performed extensive resolution studies in all cases, reaching resolutions of 256^3 zones or 350,000 particles. We conclude that the observed long lifetimes and supersonic motions in molecular clouds must be due to external driving, as undriven turbulence decays far too fast to explain the observations.Comment: Submitted to Phys. Rev. Letters, 29 Nov. 1997. 10 pages, 2 figures, also available from http://www.mpia-hd.mpg.de/theory/preprints.html#maclo
    corecore