127 research outputs found

    Synote: weaving media fragments and linked data

    No full text
    While end users could easily share and tag the multimedia resources online, the searching and reusing of the inside content of multimedia, such as a certain area within an image or a ten minutes segment within a one-hour video, is still difficult. Linked data is a promising way to interlink media fragments with other resources. Many applications in Web 2.0 have generated large amount of external annotations linked to media fragments. In this paper, we use Synote as the target application to discuss how media fragments could be published together with external annotations following linked data principles. Our design solves the dereferencing, describing and interlinking methods problems in interlinking multimedia. We also implement a model to let Google index media fragments which improves media fragments' online presence. The evaluation shows that our design can successfully publish media fragments and annotations for both semantic Web agents and traditional search engines. Publishing media fragments using the design we describe in this paper will lead to better indexing of multimedia resources and their consequent findabilit

    Hypermedia and the semantic web: a research agenda

    Get PDF
    Until recently, the Semantic Web was little more than a name for the next generation Web infrastructure as envisioned by its inventor, Tim Berners-Lee. Now, with the introduction of XML and RDF, and new developments such as RDF Schema and DAML+OIL, the Semantic Web is rapidly taking shape. In this paper, we first give an overview of the state-of-the-art in Semantic Web technology, the key relationships with traditional hypermedia research, and a comprehensive reference list to various sets of literature (Hypertext, Web and Semantic Web). The core of the paper presents a research agenda b

    An interoperable and secure architecture for internet-scale decentralized personal communication

    Get PDF
    Interpersonal network communications, including Voice over IP (VoIP) and Instant Messaging (IM), are increasingly popular communications tools. However, systems to date have generally adopted a client-server model, requiring complex centralized infrastructure, or have not adhered to any VoIP or IM standard. Many deployment scenarios either require no central equipment, or due to unique properties of the deployment, are limited or rendered unattractive by central servers. to address these scenarios, we present a solution based on the Session Initiation Protocol (SIP) standard, utilizing a decentralized Peer-to-Peer (P2P) mechanism to distribute data. Our new approach, P2PSIP, enables users to communicate with minimal or no centralized servers, while providing secure, real-time, authenticated communications comparable in security and performance to centralized solutions.;We present two complete protocol descriptions and system designs. The first, the SOSIMPLE/dSIP protocol, is a P2P-over-SIP solution, utilizing SIP both for the transport of P2P messages and personal communications, yielding an interoperable, single-stack solution for P2P communications. The RELOAD protocol is a binary P2P protocol, designed for use in a SIP-using-P2P architecture where an existing SIP application is modified to use an additional, binary RELOAD stack to distribute user information without need for a central server.;To meet the unique security needs of a fully decentralized communications system, we propose an enrollment-time certificate authority model that provides asserted identity and strong P2P and user-level security. In this model, a centralized server is contacted only at enrollment time. No run-time connections to the servers are required.;Additionally, we show that traditional P2P message routing mechanisms are inappropriate for P2PSIP. The existing mechanisms are generally optimized for file sharing and neglect critical practical elements of the open Internet --- namely link-level security and asymmetric connectivity caused by Network Address Translators (NATs). In response to these shortcomings, we introduce a new message routing paradigm, Adaptive Routing (AR), and using both analytical models and simulation show that AR significantly improves message routing performance for P2PSIP systems.;Our work has led to the creation of a new research topic within the P2P and interpersonal communications communities, P2PSIP. Our seminal publications have provided the impetus for subsequent P2PSIP publications, for the listing of P2PSIP as a topic in conference calls for papers, and for the formation of a new working group in the Internet Engineering Task Force (IETF), directed to develop an open Internet standard for P2PSIP
    • …
    corecore