110 research outputs found

    IST-2000-30148 I-METRA: D4 Performance evaluation

    Get PDF
    This document considers the performance of multiantenna transmit/receive techniques in high-speed downlink and uplink packet access. The evaluation is done using both link and system level simulations by taking into account link adaptation and packet retransmissions. The document is based on the initial studies carried out in deliverables D3.1 and D3.2.Preprin

    IST-2000-30148 I-METRA: D3.2 Implementation of relevant algorithms

    Get PDF
    This deliverable provides a high level description of the software developed within the I-METRA project following the selection reported in D3.1 "Design, Analysis and Selection of Suitable Algorithms".Preprin

    Near-Instantaneously Adaptive HSDPA-Style OFDM Versus MC-CDMA Transceivers for WIFI, WIMAX, and Next-Generation Cellular Systems

    No full text
    Burts-by-burst (BbB) adaptive high-speed downlink packet access (HSDPA) style multicarrier systems are reviewed, identifying their most critical design aspects. These systems exhibit numerous attractive features, rendering them eminently eligible for employment in next-generation wireless systems. It is argued that BbB-adaptive or symbol-by-symbol adaptive orthogonal frequency division multiplex (OFDM) modems counteract the near instantaneous channel quality variations and hence attain an increased throughput or robustness in comparison to their fixed-mode counterparts. Although they act quite differently, various diversity techniques, such as Rake receivers and space-time block coding (STBC) are also capable of mitigating the channel quality variations in their effort to reduce the bit error ratio (BER), provided that the individual antenna elements experience independent fading. By contrast, in the presence of correlated fading imposed by shadowing or time-variant multiuser interference, the benefits of space-time coding erode and it is unrealistic to expect that a fixed-mode space-time coded system remains capable of maintaining a near-constant BER

    Rapid Industrial Prototyping and SoC Design of 3G/4G Wireless Systems Using an HLS Methodology

    Get PDF
    Many very-high-complexity signal processing algorithms are required in future wireless systems, giving tremendous challenges to real-time implementations. In this paper, we present our industrial rapid prototyping experiences on 3G/4G wireless systems using advanced signal processing algorithms in MIMO-CDMA and MIMO-OFDM systems. Core system design issues are studied and advanced receiver algorithms suitable for implementation are proposed for synchronization, MIMO equalization, and detection. We then present VLSI-oriented complexity reduction schemes and demonstrate how to interact these high-complexity algorithms with an HLS-based methodology for extensive design space exploration. This is achieved by abstracting the main effort from hardware iterations to the algorithmic C/C++ fixed-point design. We also analyze the advantages and limitations of the methodology. Our industrial design experience demonstrates that it is possible to enable an extensive architectural analysis in a short-time frame using HLS methodology, which significantly shortens the time to market for wireless systems.National Science Foundatio

    Advanced receivers for high data rate mobile communications

    Get PDF
    Improving the spectral efficiency is a key issue in the future wireless communication systems since the spectrum is a scarce resource. Both the number of users as well the demanded data rates are increasing all the time. Furthermore, in mobile communications the wireless link is required to be reliable even when the mobile is in a fast moving vehicle. Using Multiple-Input Multiple-Output (MIMO) antennas is a well known technique to provide higher spectral efficiency as well as better link reliability. Additionally, higher order modulation methods can be used to provide higher data rates. In order to benefit from these enhancements in practise, sophisticated signal processing methods as well as accurate estimates of time-varying wireless channel parameters are needed. This thesis addresses the problem of designing multi-antenna receivers in high data rate systems. The case of multiple transmit antennas is also considered. System specific features of High Speed Downlink Packet Access (HSDPA) which is part of 3rd generation (3G) Wideband Code Division Multiple Access (WCDMA) evolution are exploited in channel estimation methods and in MIMO receiver design. Additionally, complexity reduction methods for Minimum Mean Square Error (MMSE) equalization are addressed. Blind channel estimation methods are spectrally efficient, since no extra resources are needed for pilot signals. However, in mobile communications accurate estimates are needed also in fast fading channels. Consequently, semi-blind channel estimation methods where the receiver combines blind and pilot based channel estimation are an appealing alternative. In this thesis blind and semi-blind channel estimation methods based on knowledge of multiple spreading codes are derived. A novel semi-blind combining scheme for code multiplexed pilot signal and blind estimation is proposed. Another important factor in receiver design criteria is the structure of interference in the received signals. Interference mitigation techniques in MIMO systems have been shown to be potential methods for providing improved performance. A chip level inter-antenna interference cancellation method has been developed in this thesis for HSDPA. Furthermore, this multi-stage ordered interference canceler is combined with the semi-blind channel estimation scheme to enhance the system performance further.Langattomassa tiedonsiirrossa radiospektrin tehokas käyttö on tulevaisuuden suuria haasteita. Taajuuksia on käytössä vain rajoitetusti, kun taas käyttäjien määrä sekä vaaditut siirtonopeudet kasvavat jatkuvasti. Lisäksi langattomien yhteyksien on toimittava luotettavasti myös nopeasti liikkuvissa kulkuneuvoissa. Moniantennijärjestelmät, joissa on useita antenneita sekä tukiasemissa että päätelaitteissa mahdollistavat radiospektrin tehokkaamman käytön sekä parantavat yhteyksien laatua. Tiedonsiirtonopeutta voidaan myös kasvattaa erilaisilla modulaatiotekniikoilla. Hyötyjen saavutamiseksi käytännössä tarvitaan sekä kehittyneitä vastaanotinrakenteita että tarkkoja estimaatteja aikamuuttuvasta radiokanavasta. Tässä työssä on kehitetty vastaanotinrakenteita ja kanavan estimointimenetelmiä kolmannen sukupolven (3G) nopeiden datayhteyksien (HSPA) järjestelmissä. Työssä on johdettu menetelmiä, jotka hyödyntävät HSPA järjestelmien erikoispiirteitä tehokkaasti. Lisäksi on kehitetty laskennallisesti tehokkaita menetelmiä vastaanottimien signaalinkäsittelyyn. Ns. sokeat menetelmät mahdollistavat taajuuskaistan tehokkaan käytön, koska ne eivät vaadi tunnettuja harjoitussignaaleja. Mobiileissa tietolikennejärjestelmissä radiokanava saattaa kuitenkin muuttua hyvin nopeasti, jonka vuoksi kanavan estimoinnissa on tyypillisesti hyödynnetty tunnettua pilottisignaalia. Yhdistämällä pilottipohjainen ja sokea kanavaestimointimenetelmä, voidaan saavuttaa molempien menetelmien edut. Tässä työssä kehitettiin sokeita kanavaestimointimenetelmiä, jotka hyödyntävät useita tunnettuja hajoituskoodeja. Sokean ja koodijakoiseen pilottisignaaliin pohjautuvien kanavan estimaattien yhdistämiseksi kehitettiin uusi menetelmä. Signaalin laatua ja siten vastaanottimen suorituskykyä voidaan langattomissa järjestelmissä parantaa vaimentamalla interferenssiä eli häiriöitä. Vastaanottimen toimintaa voidaan tehostaa oleellisesti, jos häiriösignaalin rakenne tunnetaan. Käytettäessä useampaa lähetysantennia HSPA järjestelmissä vastaanotetussa signaalissa olevia häiriötä voidaan kumota usealla eri tasolla. Tässä työssä on kehitetty chippitasolla häiriöitä kumoava vastaanotinrakenne, joka hyödyntää HSPA järjestelmän ominaisuuksia. Vastaanottimen suorituskykyä on edelleen parannettu yhdistämällä se aiemmin esitettyyn puolisokeaan kanavan estimointimenetelmään.reviewe

    Efficient Radio Resource Allocation Schemes and Code Optimizations for High Speed Downlink Packet Access Transmission

    No full text
    An important enhancement on the Wideband Code Division Multiple Access (WCDMA) air interface of the 3G mobile communications, High Speed Downlink Packet Access (HSDPA) standard has been launched to realize higher spectral utilization efficiency. It introduces the features of multicode CDMA transmission and Adaptive Modulation and Coding (AMC) technique, which makes radio resource allocation feasible and essential. This thesis studies channel-aware resource allocation schemes, coupled with fast power adjustment and spreading code optimization techniques, for the HSDPA standard operating over frequency selective channel. A two-group resource allocation scheme is developed in order to achieve a promising balance between performance enhancement and time efficiency. It only requires calculating two parameters to specify the allocations of discrete bit rates and transmitted symbol energies in all channels. The thesis develops the calculation methods of the two parameters for interference-free and interference-present channels, respectively. For the interference-present channels, the performance of two-group allocation can be further enhanced by applying a clustering-based channel removal scheme. In order to make the two-group approach more time-efficient, reduction in matrix inversions in optimum energy calculation is then discussed. When the Minimum Mean Square Error (MMSE) equalizer is applied, optimum energy allocation can be calculated by iterating a set of eigenvalues and eigenvectors. By using the MMSE Successive Interference Cancellation (SIC) receiver, the optimum energies are calculated recursively combined with an optimum channel ordering scheme for enhancement in both system performance and time efficiency. This thesis then studies the signature optimization methods with multipath channel and examines their system performances when combined with different resource allocation methods. Two multipath-aware signature optimization methods are developed by applying iterative optimization techniques, for the system using MMSE equalizer and MMSE precoder respectively. A PAM system using complex signature sequences is also examined for improving resource utilization efficiency, where two receiving schemes are proposed to fully take advantage of PAM features. In addition by applying a short chip sampling window, a Singular Value Decomposition (SVD) based interference-free signature design method is presented

    Air Interface for Next Generation Mobile Communication Networks: Physical Layer Design:A LTE-A Uplink Case Study

    Get PDF

    Performance Analysis of 3G Communication Network

    Get PDF
    In this project, third generation (3G) technologies research had been carried out to design and optimization conditions for 3G network. The 3G wireless mobile communication networks are growing at an ever faster rate, and this is likely to continue in the foreseeable future. Some services such as e-mail, web browsing etc allow the transition of the network from circuit switched to packet switched operation, resulting in increased overall network performance. Higher reliability, better coverage and services, higher capacity, mobility management, and wireless multimedia are all parts of the network performance. Throughput and spectral efficiency are fundamental parameters in capacity planning for 3G cellular network deployments. This project investigates also the downlink (DL) and uplink (UL) throughput and spectral efficiency performance of the standard Universal Mobile Telecommunications system (UMTS) system for different scenarios of user and different technologies. Power consumption comparison for different mobile technology is also discussed. The analysis can significantly help system engineers to obtain crucial performance characteristics of 3G network. At the end of the paper, coverage area of 3G from one of the mobile network in Malaysia is presented
    corecore