419 research outputs found

    Challenges in Collaborative HRI for Remote Robot Teams

    Get PDF
    Collaboration between human supervisors and remote teams of robots is highly challenging, particularly in high-stakes, distant, hazardous locations, such as off-shore energy platforms. In order for these teams of robots to truly be beneficial, they need to be trusted to operate autonomously, performing tasks such as inspection and emergency response, thus reducing the number of personnel placed in harm's way. As remote robots are generally trusted less than robots in close-proximity, we present a solution to instil trust in the operator through a `mediator robot' that can exhibit social skills, alongside sophisticated visualisation techniques. In this position paper, we present general challenges and then take a closer look at one challenge in particular, discussing an initial study, which investigates the relationship between the level of control the supervisor hands over to the mediator robot and how this affects their trust. We show that the supervisor is more likely to have higher trust overall if their initial experience involves handing over control of the emergency situation to the robotic assistant. We discuss this result, here, as well as other challenges and interaction techniques for human-robot collaboration.Comment: 9 pages. Peer reviewed position paper accepted in the CHI 2019 Workshop: The Challenges of Working on Social Robots that Collaborate with People (SIRCHI2019), ACM CHI Conference on Human Factors in Computing Systems, May 2019, Glasgow, U

    Mixed Initiative Systems for Human-Swarm Interaction: Opportunities and Challenges

    Full text link
    Human-swarm interaction (HSI) involves a number of human factors impacting human behaviour throughout the interaction. As the technologies used within HSI advance, it is more tempting to increase the level of swarm autonomy within the interaction to reduce the workload on humans. Yet, the prospective negative effects of high levels of autonomy on human situational awareness can hinder this process. Flexible autonomy aims at trading-off these effects by changing the level of autonomy within the interaction when required; with mixed-initiatives combining human preferences and automation's recommendations to select an appropriate level of autonomy at a certain point of time. However, the effective implementation of mixed-initiative systems raises fundamental questions on how to combine human preferences and automation recommendations, how to realise the selected level of autonomy, and what the future impacts on the cognitive states of a human are. We explore open challenges that hamper the process of developing effective flexible autonomy. We then highlight the potential benefits of using system modelling techniques in HSI by illustrating how they provide HSI designers with an opportunity to evaluate different strategies for assessing the state of the mission and for adapting the level of autonomy within the interaction to maximise mission success metrics.Comment: Author version, accepted at the 2018 IEEE Annual Systems Modelling Conference, Canberra, Australi

    Wait, I\u27m tagged?! Toward AR in Project Aquaticus

    Get PDF
    Human-robot teaming to perform complex tasks in a large environment is limited by the human’s ability to make informed decisions. We aim to use augmented reality to convey critical information to the human to reduce cognitive workload and increase situational awareness. By bridging previous Project Aquaticus work to virtual reality in Unity 3D, we are creating a testbed to easily and repeatedly measure the effectiveness of augmented reality information display solutions to support competitive gameplay. We expect the human-robot teaming performance to be improved due to the increased situational awareness and reduced stress that the augmented reality data display provides

    Magician simulator — A realistic simulator for heterogeneous teams of autonomous robots

    Get PDF
    We report on the development of a new simulation environment for use in Multi-Robot Learning, Swarm Robotics, Robot Teaming, Human Factors and Operator Training. The simulator provides a realistic environment for examining methods for localization and navigation, sensor analysis, object identification and tracking, as well as strategy development, interface refinement and operator training (based on various degrees of heterogeneity, robot teaming, and connectivity). The simulation additionally incorporates real-time human-robot interaction and allows hybrid operation with a mix of simulated and real robots and sensor inputs

    A global workspace theory model for trust estimation in human-robot interaction

    Get PDF
    Successful and genuine social connections between humans are based on trust, even more when the people involved have to collaborate to reach a shared goal. With the advent of new findings and technologies in the field of robotics, it appears that this same key factor that regulates relationships between humans also applies with the same importance to human-robot interactions (HRI). Previous studies have proven the usefulness of a robot able to estimate the trustworthiness of its human collaborators and in this position paper we discuss a method to extend an existing state-of-the-art trust model with considerations based on social cues such as emotions. The proposed model follows the Global Workspace Theory (GWT) principles to build a novel system able to combine multiple specialised expert systems to determine whether the partner can be considered trustworthy or not. Positive results would demonstrate the usefulness of using constructive biases to enhance the teaming skills of social robots
    • …
    corecore