88 research outputs found

    Small Collaboration: Numerical Analysis of Electromagnetic Problems (hybrid meeting)

    Get PDF
    The classical theory of electromagnetism describes the interaction of electrically charged particles through electromagnetic forces, which are carried by the electric and magnetic fields. The propagation of the electromagnetic fields can be described by Maxwell's equations. Solving Maxwell's equations numerically is a challenging problem which appears in many different technical applications. Difficulties arise for instance from material interfaces or if the geometrical features are much larger than or much smaller than a typical wavelength. The spatial discretization needs to combine good geometrical flexibility with a relatively high order of accuracy. The aim of this small-scale, week-long interactive mini-workshop jointly organized by the University of Duisburg-Essen and the University of Twente, and kindly hosted at the MFO, is to bring together experts in non-standard and mixed finite elements methods with experts in the field of electromagnetism

    Non-Spurious Spectral Like Element Methods for Maxwell's equations

    Get PDF
    International audienceIn this paper, we give the state of the art for the so called "mixed spectral elements" for Maxwell's equations. Several families of elements, such as edge elements and discontinuous Galerkin methods (DGM) are presented and discussed. In particular, we show the need of introducing some numerical dissipation terms to avoid spurious modes in these methods. Such terms are classical for DGM but their use for edge element methods is a novel approach described in this paper. Finally, numerical experiments show the fast and low-cost character of these elements

    High-Order Leap-Frog Based Discontinuous Galerkin Method for the Time-Domain Maxwell Equations on Non-Conforming Simplicial Meshes

    Get PDF
    International audienceA high-order leap-frog based non-dissipative discontinuous Galerkin time-domain method for solving Maxwell's equations is introduced and analyzed. The proposed method combines a centered approximation for the evaluation of fluxes at the interface between neighboring elements, with a Nth-order leap-frog time scheme. Moreover, the interpolation degree is defined at the element level and the mesh is refined locally in a non-conforming way resulting in arbitrary level hanging nodes. The method is proved to be stable under some CFL-like condition on the time step. The convergence of the semi-discrete approximation to Maxwell's equations is established rigorously and bounds on the global divergence error are provided. Numerical experiments with high-order elements show the potential of the method

    A space–time Trefftz discontinuous Galerkin method for the acoustic wave equation in first-order formulation

    Get PDF
    We introduce a space–time Trefftz discontinuous Galerkin method for the first-order transient acoustic wave equations in arbitrary space dimensions, extending the one-dimensional scheme of Kretzschmar et al. (IMA J Numer Anal 36:1599–1635, 2016). Test and trial discrete functions are space–time piecewise polynomial solutions of the wave equations. We prove well-posedness and a priori error bounds in both skeleton-based and mesh-independent norms. The space–time formulation corresponds to an implicit time-stepping scheme, if posed on meshes partitioned in time slabs, or to an explicit scheme, if posed on “tent-pitched” meshes. We describe two Trefftz polynomial discrete spaces, introduce bases for them and prove optimal, high-order h-convergence bounds

    On stability of discretizations of the Helmholtz equation (extended version)

    Full text link
    We review the stability properties of several discretizations of the Helmholtz equation at large wavenumbers. For a model problem in a polygon, a complete kk-explicit stability (including kk-explicit stability of the continuous problem) and convergence theory for high order finite element methods is developed. In particular, quasi-optimality is shown for a fixed number of degrees of freedom per wavelength if the mesh size hh and the approximation order pp are selected such that kh/pkh/p is sufficiently small and p=O(logk)p = O(\log k), and, additionally, appropriate mesh refinement is used near the vertices. We also review the stability properties of two classes of numerical schemes that use piecewise solutions of the homogeneous Helmholtz equation, namely, Least Squares methods and Discontinuous Galerkin (DG) methods. The latter includes the Ultra Weak Variational Formulation

    A unified error analysis for spatial discretizations of wave-type equations with applications to dynamic boundary conditions

    Get PDF
    This thesis provides a unified framework for the error analysis of non-conforming space discretizations of linear wave equations in time-domain, which can be cast as symmetric hyperbolic systems or second-order wave equations. Such problems can be written as first-order evolution equations in Hilbert spaces with linear monotone operators. We employ semigroup theory for the well-posedness analysis and to obtain stability estimates for the space discretizations. To compare the finite dimensional approximations with the original solution, we use the concept of a lift from the discrete to the continuous space. Time integration with the Crank–Nicolson method is analyzed. In this framework, we derive a priori error bounds for the abstract space semi-discretization in terms of interpolation and discretization errors. These error bounds yield previously unkown convergence rates for isoparametric finite element discretizations of wave equations with dynamic boundary conditions in smooth domains. Moreover, our results allow to consider already investigated space discretizations in a unified way. Here it successfully reproduces known error bounds. Among the examples which we dicuss in this thesis are discontinuous Galerkin discretizations of Maxwell’s equations and finite elements with mass lumping for the scalar wave equation

    High-Order Leap-Frog Based Discontinuous Galerkin Method for the Time-Domain Maxwell Equations on Non-Conforming Simplicial Meshes

    Get PDF
    International audienceA high-order leap-frog based non-dissipative discontinuous Galerkin time-domain method for solving Maxwell's equations is introduced and analyzed. The proposed method combines a centered approximation for the evaluation of fluxes at the interface between neighboring elements, with a Nth-order leap-frog time scheme. Moreover, the interpolation degree is defined at the element level and the mesh is refined locally in a non-conforming way resulting in arbitrary level hanging nodes. The method is proved to be stable under some CFL-like condition on the time step. The convergence of the semi-discrete approximation to Maxwell's equations is established rigorously and bounds on the global divergence error are provided. Numerical experiments with high-order elements show the potential of the method
    corecore