4,591 research outputs found

    HOS-Based multi-component frequency estimation

    Get PDF
    We are considering a problem of carrier frequencies recovery for the linear mixtures of two BPSK signals in Gaussian noise. The goal is to simplify further signal analysis: signal separation, modulation identification and parameters estimation. The presented method is based on multidimensional (time-frequencyphase) representation of the Higher Order Statistics (HOS) of the received signal distribution. Performance of the proposed algorithm is verified through extensive simulations and compared to the MUSIC high-resolution spectral estimation method. Corresponding results show that our technique outperforms the latter for all considered frequency shifts, even for high signal-to-noise ratios (SNR)

    A robust method for diagnosis of morphological arrhythmias based on Hermitian model of higher-order statistics

    Get PDF
    Abstract Background Electrocardiography (ECG) signal is a primary criterion for medical practitioners to diagnose heart diseases. The development of a reliable, accurate, non-invasive and robust method for arrhythmia detection could assists cardiologists in the study of patients with heart diseases. This paper provides a method for morphological heart arrhythmia detection which might have different shapes in one category and also different morphologies in relation to the patients. The distinctive property of this method in addition to accuracy is the robustness of that, in presence of Gaussian noise, time and amplitude shift. Methods In this work 2nd, 3rd and 4th order cumulants of the ECG beat are calculated and modeled by linear combinations of Hermitian basis functions. Then, the parameters of each cumulant model are used as feature vectors to classify five different ECG beats namely as Normal, PVC, APC, RBBB and LBBB using 1-Nearest Neighborhood (1-NN) classifier. Finally, after classifying each model, a final decision making rule apply to these specified classes and the type of ECG beat is defined. Results The experiment was applied for a set of ECG beats consist of 9367 samples in 5 different categories from MIT/BIH heart arrhythmia database. The specificity of 99.67% and the sensitivity of 98.66% in arrhythmia detection are achieved which indicates the power of the algorithm. Also, the accuracy of the system remained almost intact in the presence of Gaussian noise, time shift and amplitude shift of ECG signals. Conclusions This paper presents a novel and robust methodology in morphological heart arrhythmia detection. The methodology based on the Hermite model of the Higher-Order Statistics (HOS). The ability of HOS in suppressing morphological variations of different class-specific arrhythmias and also reducing the effects of Gaussian noise, made HOS, suitable for detection morphological heart arrhythmias. The proposed method exploits these properties in conjunction with Hermitian model to perform an efficient and reliable classification approach to detect five morphological heart arrhythmias. And the time consumption of this method for each beat is less than the period of a normal beat.</p

    Go From the General to the Particular: Multi-Domain Translation with Domain Transformation Networks

    Full text link
    The key challenge of multi-domain translation lies in simultaneously encoding both the general knowledge shared across domains and the particular knowledge distinctive to each domain in a unified model. Previous work shows that the standard neural machine translation (NMT) model, trained on mixed-domain data, generally captures the general knowledge, but misses the domain-specific knowledge. In response to this problem, we augment NMT model with additional domain transformation networks to transform the general representations to domain-specific representations, which are subsequently fed to the NMT decoder. To guarantee the knowledge transformation, we also propose two complementary supervision signals by leveraging the power of knowledge distillation and adversarial learning. Experimental results on several language pairs, covering both balanced and unbalanced multi-domain translation, demonstrate the effectiveness and universality of the proposed approach. Encouragingly, the proposed unified model achieves comparable results with the fine-tuning approach that requires multiple models to preserve the particular knowledge. Further analyses reveal that the domain transformation networks successfully capture the domain-specific knowledge as expected.Comment: AAAI 202

    An Empiric Analysis of Wavelet-Based Feature Extraction on Deep Learning and Machine Learning Algorithms for Arrhythmia Classification

    Get PDF
    The aberration in human electrocardiogram (ECG) affects cardiovascular events that may lead to arrhythmias. Many automation systems for ECG classification exist, but the ambiguity to wisely employ the in-built feature extraction or expert based manual feature extraction before classification still needs recognition. The proposed work compares and presents the enactment of using machine learning and deep learning classification on time series sequences. The two classifiers, namely the Support Vector Machine (SVM) and the Bi-directional Long Short-Term Memory (BiLSTM) network, are separately trained by direct ECG samples and extracted feature vectors using multiresolution analysis of Maximal Overlap Discrete Wavelet Transform (MODWT). Single beat segmentation with R-peaks and QRS detection is also involved with 6 morphological and 12 statistical feature extraction. The two benchmark datasets, multi-class, and binary class, are acquired from the PhysioNet database. For the binary dataset, BiLSTM with direct samples and with feature extraction gives 58.1% and 80.7% testing accuracy, respectively, whereas SVM outperforms with 99.88% accuracy. For the multi-class dataset, BiLSTM classification accuracy with the direct sample and the extracted feature is 49.6% and 95.4%, whereas SVM shows 99.44%. The efficient statistical workout depicts that the extracted feature-based selection of data can deliver distinguished outcomes compared with raw ECG data or in-built automatic feature extraction. The machine learning classifiers like SVM with knowledge-based feature extraction can equally or better perform than Bi-LSTM network for certain datasets

    Assessment of linear and nonlinear/complex heartbeat dynamics in subclinical depression (dysphoria)

    Get PDF
    Objective: Depression is one of the leading causes of disability worldwide. Most previous studies have focused on major depression, and studies on subclinical depression, such as those on so-called dysphoria, have been overlooked. Indeed, dysphoria is associated with a high prevalence of somatic disorders, and a reduction of quality of life and life expectancy. In current clinical practice, dysphoria is assessed using psychometric questionnaires and structured interviews only, without taking into account objective pathophysiological indices. To address this problem, in this study we investigated heartbeat linear and nonlinear dynamics to derive objective autonomic nervous system biomarkers of dysphoria. Approach: Sixty undergraduate students participated in the study: according to clinical evaluation, 24 of them were dysphoric. Extensive group-wise statistics was performed to characterize the pathological and control groups. Moreover, a recursive feature elimination algorithm based on a K-NN classifier was carried out for the automatic recognition of dysphoria at a single-subject level. Main results: The results showed that the most significant group-wise differences referred to increased heartbeat complexity (particularly for fractal dimension, sample entropy and recurrence plot analysis) with regards to the healthy controls, confirming dysfunctional nonlinear sympatho-vagal dynamics in mood disorders. Furthermore, a balanced accuracy of 79.17% was achieved in automatically distinguishing dysphoric patients from controls, with the most informative power attributed to nonlinear, spectral and polyspectral quantifiers of cardiovascular variability. Significance: This study experimentally supports the assessment of dysphoria as a defined clinical condition with specific characteristics which are different both from healthy, fully euthymic controls and from full-blown major depression

    Wireless Sensor Networks for Ecosystem Monitoring & Port Surveillance

    No full text
    International audienceProviding a wide variety of the most up - to - date innovations in sensor technology and sensor networks, our current project should achieve two major goals. The first goal covers various issues related to the public maritime transport safety and security, such as the coastal and port surveillance systems. While the second one w ill improve the capacity of public authorities to develop and implement smart environment policies by monitoring the shallow coastal water ecosystems. At this stage of our project, a surveillance platform has been already installed near the "Molène Island" which is a small but the largest island of an archipelago of many islands located off the West coast of Brittany in North Western France. Our final objective is to add various sensors as well as to design, develop and implement new algorithms to extend th e capacity of the existing platform and reach the goals of our project. Finally, this manuscript introduces the identified approaches as well as t he second phase of the project which consists in analyzing living underwater micro - organisms (the population o f Marine Micro - Organisms, i.e. MMOs such as Phytoplankton and Zooplankton micro - zooplankton, but also heterotrophic bacterioplankton) in order to predict the health conditions of the macro - environment s . In addition, this communication discusses developed t echniques and concepts to deal with several practical problems related to our project. Some results are given and the whole system architecture is briefly described. This manuscript will also addresses the national benefit of such projects in the case of t hree different countries (Australia, France and KS

    Support vector machine based classification in condition monitoring of induction motors

    Get PDF
    Continuous and trouble-free operation of induction motors is an essential part of modern power and production plants. Faults and failures of electrical machinery may cause remarkable economical losses but also highly dangerous situations. In addition to analytical and knowledge-based models, application of data-based models has established a firm position in the induction motor fault diagnostics during the last decade. For example, pattern recognition with Neural Networks (NN) is widely studied. Support Vector Machine (SVM) is a novel machine learning method introduced in early 90's. It is based on the statistical learning theory presented by V.N. Vapnik, and it has been successfully applied to numerous classification and pattern recognition problems such as text categorization, image recognition and bioinformatics. SVM based classifier is built to minimize the structural misclassification risk, whereas conventional classification techniques often apply minimization of the empirical risk. Therefore, SVM is claimed to lead enhanced generalisation properties. Further, application of SVM results in the global solution for a classification problem. Thirdly, SVM based classification is attractive, because its efficiency does not directly depend on the dimension of classified entities. This property is very useful in fault diagnostics, because the number of fault classification features does not have to be drastically limited. However, SVM has not yet been widely studied in the area of fault diagnostics. Specifically, in the condition monitoring of induction motor, it does not seem to have been considered before this research. In this thesis, a SVM based classification scheme is designed for different tasks in induction motor fault diagnostics and for partial discharge analysis of insulation condition monitoring. Several variables are compared as fault indicators, and forces on rotor are found to be important in fault detection instead of motor current that is currently widely studied. The measurement of forces is difficult, but easily measurable vibrations are directly related to the forces. Hence, vibration monitoring is considered in more detail as the medium for the motor fault diagnostics. SVM classifiers are essentially 2-class classifiers. In addition to the induction motor fault diagnostics, the results of this thesis cover various methods for coupling SVMs for carrying out a multi-class classification problem.reviewe

    Интеллектуальное кресло-робот со вспомогательными средствами связи с использованием откликов TEP и характеристик диапазона спектра более высокого порядка

    Get PDF
    In recent years, electroencephalography-based navigation and communication systems for differentially enabled communities have been progressively receiving more attention. To provide a navigation system with a communication aid, a customized protocol using thought evoked potentials has been proposed in this research work to aid the differentially enabled communities. This study presents the higher order spectra based features to categorize seven basic tasks that include Forward, Left, Right, Yes, NO, Help and Relax; that can be used for navigating a robot chair and also for communications using an oddball paradigm. The proposed system records the eight-channel wireless electroencephalography signal from ten subjects while the subject was perceiving seven different tasks. The recorded brain wave signals are pre-processed to remove the interference waveforms and segmented into six frequency band signals, i. e. Delta, Theta, Alpha, Beta, Gamma 1-1 and Gamma 2. The frequency band signals are segmented into frame samples of equal length and are used to extract the features using bispectrum estimation. Further, statistical features such as the average value of bispectral magnitude and entropy using the bispectrum field are extracted and formed as a feature set. The extracted feature sets are tenfold cross validated using multilayer neural network classifier. From the results, it is observed that the entropy of bispectral magnitude feature based classifier model has the maximum classification accuracy of 84.71 % and the value of the bispectral magnitude feature based classifier model has the minimum classification accuracy of 68.52 %.В последние годы все больше внимания уделяется навигационным и коммуникационным системам на основе электроэнцефалограммы головного мозга для сообществ с разными возможностями. Для предоставления навигационной системе вспомогательных средств связи в работе предложен настраиваемый протокол, использующий вызванные мыслительные потенциалы, чтобы помочь сообществам с разными возможностями. Представлены функции, основанные на спектрах более высокого порядка, для классификации семи основных задач, таких как Вперед, Влево, Вправо, Да, НЕТ, Помощь и Расслабление, которые можно использовать для управления креслом-роботом, а также для связи с использованием необычной парадигмы. Предлагаемая система записывает восьмиканальный беспроводной сигнал электроэнцефалографии от десяти субъектов, в то время как субъект воспринимал семь различных задач. Записанные сигналы мозговых волн предварительно обрабатываются для удаления интерференционных волн и сегментируются на сигналы шести частотных диапазонов: дельта, тета, альфа, бета, гамма 1-1 и гамма 2. Сигналы полосы частот сегментируются на выборки кадров равной длины и используются для извлечения признаков с использованием оценки биспектра. Кроме того, статистические характеристики, такие как среднее значение биспектральной величины и энтропия с использованием области биспектра, извлекаются и формируются как набор характеристик. Извлеченные наборы функций проходят десятикратную перекрестную проверку с использованием классификатора многослойной нейронной сети. Результаты показали, что энтропия модели классификатора на основе характеристик биспектральной величины имеет максимальную точность классификации 84,71 %, а среднее значение модели классификатора на основе характеристик биспектральной величины – минимальную точность классификации 68,52 %

    An Online Solution for Localisation, Tracking and Separation of Moving Speech Sources

    Get PDF
    The problem of separating a time varying number of speech sources in a room is difficult to solve. The challenge lies in estimating the number and the location of these speech sources. Furthermore, the tracked speech sources need to be separated. This thesis proposes a solution which utilises the Random Finite Set approach to estimate the number and location of these speech sources and subsequently separate the speech source mixture via time frequency masking
    corecore