44 research outputs found

    Arabic Handwritten Words Off-line Recognition based on HMMs and DBNs

    Get PDF
    International audienceIn this work, we investigate the combination of PGM (Propabilistic Graphical Models) classifiers, either independent or coupled, for the recognition of Arabic handwritten words. The independent classifiers are vertical and horizontal HMMs (Hidden Markov Models) whose observable outputs are features extracted from the image columns and the image rows respectively. The coupled classifiers associate the vertical and horizontal observation streams into a single DBN (Dynamic Bayesian Network). A novel method to extract word baseline and a simple and easily extractable features to construct feature vectors for words in the vocabulary are proposed. Some of these features are statistical, based on pixel distributions and local pixel configurations. Others are structural, based on the presence of ascenders, descenders, loops and diacritic points. Experiments on handwritten Arabic words from IFN/ENIT strongly support the feasibility of the proposed approach. The recognition rates achieve 90.42% with vertical and horizontal HMM, 85.03% and 85.21% with respectively a first and a second DBN which outperform results of some works based on PGMs

    Off-line Arabic Handwriting Recognition System Using Fast Wavelet Transform

    Get PDF
    In this research, off-line handwriting recognition system for Arabic alphabet is introduced. The system contains three main stages: preprocessing, segmentation and recognition stage. In the preprocessing stage, Radon transform was used in the design of algorithms for page, line and word skew correction as well as for word slant correction. In the segmentation stage, Hough transform approach was used for line extraction. For line to words and word to characters segmentation, a statistical method using mathematic representation of the lines and words binary image was used. Unlike most of current handwriting recognition system, our system simulates the human mechanism for image recognition, where images are encoded and saved in memory as groups according to their similarity to each other. Characters are decomposed into a coefficient vectors, using fast wavelet transform, then, vectors, that represent a character in different possible shapes, are saved as groups with one representative for each group. The recognition is achieved by comparing a vector of the character to be recognized with group representatives. Experiments showed that the proposed system is able to achieve the recognition task with 90.26% of accuracy. The system needs only 3.41 seconds a most to recognize a single character in a text of 15 lines where each line has 10 words on average

    Advances in Character Recognition

    Get PDF
    This book presents advances in character recognition, and it consists of 12 chapters that cover wide range of topics on different aspects of character recognition. Hopefully, this book will serve as a reference source for academic research, for professionals working in the character recognition field and for all interested in the subject

    Towards robust real-world historical handwriting recognition

    Get PDF
    In this thesis, we make a bridge from the past to the future by using artificial-intelligence methods for text recognition in a historical Dutch collection of the Natuurkundige Commissie that explored Indonesia (1820-1850). In spite of the successes of systems like 'ChatGPT', reading historical handwriting is still quite challenging for AI. Whereas GPT-like methods work on digital texts, historical manuscripts are only available as an extremely diverse collections of (pixel) images. Despite the great results, current DL methods are very data greedy, time consuming, heavily dependent on the human expert from the humanities for labeling and require machine-learning experts for designing the models. Ideally, the use of deep learning methods should require minimal human effort, have an algorithm observe the evolution of the training process, and avoid inefficient use of the already sparse amount of labeled data. We present several approaches towards dealing with these problems, aiming to improve the robustness of current methods and to improve the autonomy in training. We applied our novel word and line text recognition approaches on nine data sets differing in time period, language, and difficulty: three locally collected historical Latin-based data sets from Naturalis, Leiden; four public Latin-based benchmark data sets for comparability with other approaches; and two Arabic data sets. Using ensemble voting of just five neural networks, a level of accuracy was achieved which required hundreds of neural networks in earlier studies. Moreover, we increased the speed of evaluation of each training epoch without the need of labeled data

    Off-line Arabic Handwriting Recognition System Using Fast Wavelet Transform

    Get PDF
    In this research, off-line handwriting recognition system for Arabic alphabet is introduced. The system contains three main stages: preprocessing, segmentation and recognition stage. In the preprocessing stage, Radon transform was used in the design of algorithms for page, line and word skew correction as well as for word slant correction. In the segmentation stage, Hough transform approach was used for line extraction. For line to words and word to characters segmentation, a statistical method using mathematic representation of the lines and words binary image was used. Unlike most of current handwriting recognition system, our system simulates the human mechanism for image recognition, where images are encoded and saved in memory as groups according to their similarity to each other. Characters are decomposed into a coefficient vectors, using fast wavelet transform, then, vectors, that represent a character in different possible shapes, are saved as groups with one representative for each group. The recognition is achieved by comparing a vector of the character to be recognized with group representatives. Experiments showed that the proposed system is able to achieve the recognition task with 90.26% of accuracy. The system needs only 3.41 seconds a most to recognize a single character in a text of 15 lines where each line has 10 words on average

    Hidden Markov Model with Binned Duration and Its Application

    Get PDF
    Hidden Markov models (HMM) have been widely used in various applications such as speech processing and bioinformatics. However, the standard hidden Markov model requires state occupancy durations to be geometrically distributed, which can be inappropriate in some real-world applications where the distributions on state intervals deviate signi cantly from the geometric distribution, such as multi-modal distributions and heavy-tailed distributions. The hidden Markov model with duration (HMMD) avoids this limitation by explicitly incor- porating the appropriate state duration distribution, at the price of signi cant computational expense. As a result, the applications of HMMD are still quited limited. In this work, we present a new algorithm - Hidden Markov Model with Binned Duration (HMMBD), whose result shows no loss of accuracy compared to the HMMD decoding performance and a com- putational expense that only diers from the much simpler and faster HMM decoding by a constant factor. More precisely, we further improve the computational complexity of HMMD from (TNN +TND) to (TNN +TND ), where TNN stands for the computational com- plexity of the HMM, D is the max duration value allowed and can be very large and D generally could be a small constant value
    corecore