737 research outputs found

    Querying out-of-vocabulary words in lexicon-based keyword spotting

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00521-016-2197-8[EN] Lexicon-based handwritten text keyword spotting (KWS) has proven to be a faster and more accurate alternative to lexicon-free methods. Nevertheless, since lexicon-based KWS relies on a predefined vocabulary, fixed in the training phase, it does not support queries involving out-of-vocabulary (OOV) keywords. In this paper, we outline previous work aimed at solving this problem and present a new approach based on smoothing the (null) scores of OOV keywords by means of the information provided by ``similar'' in-vocabulary words. Good results achieved using this approach are compared with previously published alternatives on different data sets.This work was partially supported by the Spanish MEC under FPU Grant FPU13/06281, by the Generalitat Valenciana under the Prometeo/2009/014 Project Grant ALMA-MATER, and through the EU Projects: HIMANIS (JPICH programme, Spanish grant Ref. PCIN-2015-068) and READ (Horizon-2020 programme, grant Ref. 674943).Puigcerver, J.; Toselli, AH.; Vidal, E. (2016). Querying out-of-vocabulary words in lexicon-based keyword spotting. Neural Computing and Applications. 1-10. https://doi.org/10.1007/s00521-016-2197-8S110Almazan J, Gordo A, Fornes A, Valveny E (2013) Handwritten word spotting with corrected attributes. In: 2013 IEEE international conference on computer vision (ICCV), pp 1017–1024. doi: 10.1109/ICCV.2013.130Amengual JC, Vidal E (2000) On the estimation of error-correcting parameters. In: Proceedings 15th international conference on pattern recognition, 2000, vol 2, pp 883–886Fernández D, Lladós J, Fornés A (2011) Handwritten word spotting in old manuscript images using a pseudo-structural descriptor organized in a hash structure. In: Vitri'a J, Sanches JM, Hern'andez M (eds) Pattern recognition and image analysis: Proceedings of 5th Iberian Conference, IbPRIA 2011, Las Palmas de Gran Canaria, Spain, June 8–10. Springer, Berlin, Heidelberg, pp 628–635. doi: 10.1007/978-3-642-21257-4_78Fischer A, Keller A, Frinken V, Bunke H (2012) Lexicon-free handwritten word spotting using character HMMs. Pattern Recognit Lett 33(7):934–942. doi: 10.1016/j.patrec.2011.09.009 Special Issue on Awards from ICPR 2010Fornés A, Frinken V, Fischer A, Almazán J, Jackson G, Bunke H (2011) A keyword spotting approach using blurred shape model-based descriptors. In: Proceedings of the 2011 workshop on historical document imaging and processing, pp 83–90. ACMFrinken V, Fischer A, Manmatha R, Bunke H (2012) A novel word spotting method based on recurrent neural networks. IEEE Trans Pattern Anal Mach Intell 34(2):211–224. doi: 10.1109/TPAMI.2011.113Gatos B, Pratikakis I (2009) Segmentation-free word spotting in historical printed documents. In: 10th International conference on document analysis and recognition, 2009. ICDAR’09, pp 271–275. IEEEJelinek F (1998) Statistical methods for speech recognition. MIT Press, CambridgeKneser R, Ney H (1995) Improved backing-off for N-gram language modeling. In: International conference on acoustics, speech and signal processing (ICASSP ’95), vol 1, pp 181–184. IEEE Computer Society, Los Alamitos, CA, USA. doi: http://doi.ieeecomputersociety.org/10.1109/ICASSP.1995.479394Kolcz A, Alspector J, Augusteijn M, Carlson R, Popescu GV (2000) A line-oriented approach to word spotting in handwritten documents. Pattern Anal Appl 3:153–168. doi: 10.1007/s100440070020Konidaris T, Gatos B, Ntzios K, Pratikakis I, Theodoridis S, Perantonis SJ (2007) Keyword-guided word spotting in historical printed documents using synthetic data and user feedback. Int J Doc Anal Recognit 9(2–4):167–177Kumar G, Govindaraju V (2014) Bayesian active learning for keyword spotting in handwritten documents. In: 2014 22nd International conference on pattern recognition (ICPR), pp 2041–2046. IEEELevenshtein VI (1966) Binary codes capable of correcting deletions, insertions and reversals. Sov Phys Dokl 10(8):707–710Manning CD, Raghavan P, Schtze H (2008) Introduction to information retrieval. Cambridge University Press, New YorkMarti UV, Bunke H (2002) The IAM-database: an English sentence database for offline handwriting recognition. Int J Doc Anal Recognit 5(1):39–46. doi: 10.1007/s100320200071Puigcerver J, Toselli AH, Vidal E (2014) Word-graph and character-lattice combination for KWS in handwritten documents. In: 14th International conference on frontiers in handwriting recognition (ICFHR), pp 181–186Puigcerver J, Toselli AH, Vidal E (2014) Word-graph-based handwriting keyword spotting of out-of-vocabulary queries. In: 22nd International conference on pattern recognition (ICPR), pp 2035–2040Puigcerver J, Toselli AH, Vidal E (2015) A new smoothing method for lexicon-based handwritten text keyword spotting. In: 7th Iberian conference on pattern recognition and image analysis. SpringerRath T, Manmatha R (2007) Word spotting for historical documents. Int J Doc Anal Recognit 9:139–152Robertson S. (2008) A new interpretation of average precision. In: Proceedings of the international. ACM SIGIR conference on research and development in information retrieval (SIGIR ’08), pp 689–690. ACM, New York, NY, USA. doi: http://doi.acm.org/10.1145/1390334.1390453Rodriguez-Serrano JA, Perronnin F (2009) Handwritten word-spotting using hidden markov models and universal vocabularies. Pattern Recognit 42(9):2106–2116. doi: 10.1016/j.patcog.2009.02.005 . http://www.sciencedirect.com/science/article/pii/S0031320309000673Rusinol M, Aldavert D, Toledo R, Llados J (2011) Browsing heterogeneous document collections by a segmentation-free word spotting method. In: International conference on document analysis and recognition (ICDAR), pp 63–67. doi: 10.1109/ICDAR.2011.22Shang H, Merrettal T (1996) Tries for approximate string matching. IEEE Trans Knowl Data Eng 8(4):540–547Toselli AH, Vidal E (2013) Fast HMM-Filler approach for key word spotting in handwritten documents. In: Proceedings of the 12th international conference on document analysis and recognition (ICDAR), pp 501–505Toselli AH, Vidal E (2014) Word-graph based handwriting key-word spotting: impact of word-graph size on performance. In: 11th IAPR international workshop on document analysis systems (DAS), pp 176–180. IEEEToselli AH, Vidal E, Romero V, Frinken V (2013) Word-graph based keyword spotting and indexing of handwritten document images. Technical report, Universitat Politécnica de ValénciaVidal E, Toselli AH, Puigcerver J (2015) High performance query-by-example keyword spotting using query-by-string techniques. In: 2015 13th International conference on document analysis and recognition (ICDAR), pp 741–745. IEEEWoodland P, Leggetter C, Odell J, Valtchev V, Young S (1995) The 1994 HTK large vocabulary speech recognition system. In: International conference on acoustics, speech, and signal processing (ICASSP ’95), vol 1, pp 73 –76. doi: 10.1109/ICASSP.1995.479276Wshah S, Kumar G, Govindaraju V (2012) Script independent word spotting in offline handwritten documents based on hidden markov models. In: 2012 International conference on frontiers in handwriting recognition (ICFHR), pp 14–19. doi: 10.1109/ICFHR.2012.26

    Pyramidal Stochastic Graphlet Embedding for Document Pattern Classification

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via the DOI in this recordDocument pattern classification methods using graphs have received a lot of attention because of its robust representation paradigm and rich theoretical background. However, the way of preserving and the process for delineating documents with graphs introduce noise in the rendition of underlying data, which creates instability in the graph representation. To deal with such unreliability in representation, in this paper, we propose Pyramidal Stochastic Graphlet Embedding (PSGE). Given a graph representing a document pattern, our method first computes a graph pyramid by successively reducing the base graph. Once the graph pyramid is computed, we apply Stochastic Graphlet Embedding (SGE) for each level of the pyramid and combine their embedded representation to obtain a global delineation of the original graph. The consideration of pyramid of graphs rather than just a base graph extends the representational power of the graph embedding, which reduces the instability caused due to noise and distortion. When plugged with support vector machine, our proposed PSGE has outperformed the state-of-The-art results in recognition of handwritten words as well as graphical symbols.European Union Horizon 2020Ministerio de EducaciĂłn, Cultura y Deporte, SpainRamon y Cajal FellowshipCERCA Program/Generalitat de Cataluny

    Spotting Keywords in Offline Handwritten Documents Using Hausdorff Edit Distance

    Get PDF
    Keyword spotting has become a crucial topic in handwritten document recognition, by enabling content-based retrieval of scanned documents using search terms. With a query keyword, one can search and index the digitized handwriting which in turn facilitates understanding of manuscripts. Common automated techniques address the keyword spotting problem through statistical representations. Structural representations such as graphs apprehend the complex structure of handwriting. However, they are rarely used, particularly for keyword spotting techniques, due to high computational costs. The graph edit distance, a powerful and versatile method for matching any type of labeled graph, has exponential time complexity to calculate the similarities of graphs. Hence, the use of graph edit distance is constrained to small size graphs. The recently developed Hausdorff edit distance algorithm approximates the graph edit distance with quadratic time complexity by efficiently matching local substructures. This dissertation speculates using Hausdorff edit distance could be a promising alternative to other template-based keyword spotting approaches in term of computational time and accuracy. Accordingly, the core contribution of this thesis is investigation and development of a graph-based keyword spotting technique based on the Hausdorff edit distance algorithm. The high representational power of graphs combined with the efficiency of the Hausdorff edit distance for graph matching achieves remarkable speedup as well as accuracy. In a comprehensive experimental evaluation, we demonstrate the solid performance of the proposed graph-based method when compared with state of the art, both, concerning precision and speed. The second contribution of this thesis is a keyword spotting technique which incorporates dynamic time warping and Hausdorff edit distance approaches. The structural representation of graph-based approach combined with statistical geometric features representation compliments each other in order to provide a more accurate system. The proposed system has been extensively evaluated with four types of handwriting graphs and geometric features vectors on benchmark datasets. The experiments demonstrate a performance boost in which outperforms individual systems

    Where does Computational Media Aesthetics Fit?

    Get PDF

    Feature design and lexicon reduction for efficient offline handwriting recognition

    Get PDF
    This thesis establishes a pattern recognition framework for offline word recognition systems. It focuses on the image level features because they greatly influence the recognition performance. In particular, we consider two complementary aspects of prominent features impact: lexicon reduction and the actual recognition. The first aspect, lexicon reduction, consists in the design of a weak classifier which outputs a set of candidate word hypotheses given a word image. Its main purpose is to reduce the recognition computational time while maintaining (or even improving) the recognition rate. The second aspect is the actual recognition system itself. In fact, several features exist in the literature based on different fields of research, but no consensus exists concerning the most promising ones. The goal of the proposed framework is to improve our understanding of relevant features in order to build better recognition systems. For this purpose, we addressed two specific problems: 1) feature design for lexicon reduction (application to Arabic script), and 2) feature evaluation for cursive handwriting recognition (application to Latin and Arabic scripts). Few methods exist for lexicon reduction in Arabic script, unlike Latin script. Existing methods use salient features of Arabic words such as the number of subwords and diacritics, but totally ignore the shape of the subwords. Therefore, our first goal is to perform lexicon reductionn based on subwords shape. Our approach is based on shape indexing, where the shape of a query subword is compared to a labeled database of sample subwords. For efficient comparison with a low computational overhead, we proposed the weighted topological signature vector (W-TSV) framework, where the subword shape is modeled as a weighted directed acyclic graph (DAG) from which the W-TSV vector is extracted for efficient indexing. The main contributions of this work are to extend the existing TSV framework to weighted DAG and to propose a shape indexing approach for lexicon reduction. Good performance for lexicon reduction is achieved for Arabic subwords. Nevertheless, the performance remains modest for Arabic words. Considering the results of our first work on Arabic lexicon reduction, we propose to build a new index for better performance at the word level. The subword shape and the number of subwords and diacritics are all important components of Arabic word shape. We therefore propose the Arabic word descriptor (AWD) which integrates all the aforementioned components. It is built in two steps. First, a structural descriptor (SD) is computed for each connected component (CC) of the word image. It describes the CC shape using the bag-of-words model, where each visual word represents a different local shape structure. Then, the AWD is formed by concatenating the SDs using an efficient heuristic, implicitly discriminating between subwords and diacritics. In the context of lexicon reduction, the AWD is used to index a reference database. The main contribution of this work is the design of the AWD, which integrates lowlevel cues (subword shape structure) and symbolic information (subword counts and diacritics) into a single descriptor. The proposed method has a low computational overhead, it is simple to implement and it provides state-of-the-art performance for lexicon reduction on two Arabic databases, namely the Ibn Sina database of subwords and the IFN/ENIT database of words. The last part of this thesis focuses on features for word recognition. A large body of features exist in the literature, each of them being motivated by different fields, such as pattern recognition, computer vision or machine learning. Identifying the most promising approaches would improve the design of the next generation of features. Nevertheless, because they are based on different concepts, it is difficult to compare them on a theoretical ground and efficient empirical tools are needed. Therefore, the last objective of the thesis is to provide a method for feature evaluation that assesses the strength and complementarity of existing features. A combination scheme has been designed for this purpose, in which each feature is evaluated through a reference recognition system, based on recurrent neural networks. More precisely, each feature is represented by an agent, which is an instance of the recognition system trained with that feature. The decisions of all the agents are combined using a weighted vote. The weights are jointly optimized during a training phase in order to increase the weighted vote of the true word label. Therefore, they reflect the strength and complementarity of the agents and their features for the given task. Finally, they are converted into a numerical score assigned to each feature, which is easy to interpret under this combination model. To the best of our knowledge, this is the first feature evaluation method able to quantify the importance of each feature, instead of providing a ranking based on the recognition rate. Five state-of-the-art features have been tested, and our results provide interesting insight for future feature design

    Keyword spotting in historical handwritten documents based on graph matching

    Get PDF
    In the last decades historical handwritten documents have become increasingly available in digital form. Yet, the accessibility to these documents with respect to browsing and searching remained limited as full automatic transcription is often not possible or not sufficiently accurate. This paper proposes a novel reliable approach for template-based keyword spotting in historical handwritten documents. In particular, our framework makes use of different graph representations for segmented word images and a sophisticated matching procedure. Moreover, we extend our method to a spotting ensemble. In an exhaustive experimental evaluation on four widely used benchmark datasets we show that the proposed approach is able to keep up or even outperform several state-of-the-art methods for template- and learning-based keyword spotting.The Hasler Foundation Switzerlandhttp://www.elsevier.com/locate/patcog2019-09-01hj2018Informatic

    Character Recognition

    Get PDF
    Character recognition is one of the pattern recognition technologies that are most widely used in practical applications. This book presents recent advances that are relevant to character recognition, from technical topics such as image processing, feature extraction or classification, to new applications including human-computer interfaces. The goal of this book is to provide a reference source for academic research and for professionals working in the character recognition field

    A Survey on Metric Learning for Feature Vectors and Structured Data

    Full text link
    The need for appropriate ways to measure the distance or similarity between data is ubiquitous in machine learning, pattern recognition and data mining, but handcrafting such good metrics for specific problems is generally difficult. This has led to the emergence of metric learning, which aims at automatically learning a metric from data and has attracted a lot of interest in machine learning and related fields for the past ten years. This survey paper proposes a systematic review of the metric learning literature, highlighting the pros and cons of each approach. We pay particular attention to Mahalanobis distance metric learning, a well-studied and successful framework, but additionally present a wide range of methods that have recently emerged as powerful alternatives, including nonlinear metric learning, similarity learning and local metric learning. Recent trends and extensions, such as semi-supervised metric learning, metric learning for histogram data and the derivation of generalization guarantees, are also covered. Finally, this survey addresses metric learning for structured data, in particular edit distance learning, and attempts to give an overview of the remaining challenges in metric learning for the years to come.Comment: Technical report, 59 pages. Changes in v2: fixed typos and improved presentation. Changes in v3: fixed typos. Changes in v4: fixed typos and new method
    • …
    corecore