233 research outputs found

    Fault Detection and Diagnosis Encyclopedia for Building Systems:A Systematic Review

    Get PDF
    This review aims to provide an up-to-date, comprehensive, and systematic summary of fault detection and diagnosis (FDD) in building systems. The latter was performed through a defined systematic methodology with the final selection of 221 studies. This review provides insights into four topics: (1) glossary framework of the FDD processes; (2) a classification scheme using energy system terminologies as the starting point; (3) the data, code, and performance evaluation metrics used in the reviewed literature; and (4) future research outlooks. FDD is a known and well-developed field in the aerospace, energy, and automotive sector. Nevertheless, this study found that FDD for building systems is still at an early stage worldwide. This was evident through the ongoing development of algorithms for detecting and diagnosing faults in building systems and the inconsistent use of the terminologies and definitions. In addition, there was an apparent lack of data statements in the reviewed articles, which compromised the reproducibility, and thus the practical development in this field. Furthermore, as data drove the research activity, the found dataset repositories and open code are also presented in this review. Finally, all data and documentation presented in this review are open and available in a GitHub repository

    Online failure prediction in air traffic control systems

    Get PDF
    This thesis introduces a novel approach to online failure prediction for mission critical distributed systems that has the distinctive features to be black-box, non-intrusive and online. The approach combines Complex Event Processing (CEP) and Hidden Markov Models (HMM) so as to analyze symptoms of failures that might occur in the form of anomalous conditions of performance metrics identified for such purpose. The thesis presents an architecture named CASPER, based on CEP and HMM, that relies on sniffed information from the communication network of a mission critical system, only, for predicting anomalies that can lead to software failures. An instance of Casper has been implemented, trained and tuned to monitor a real Air Traffic Control (ATC) system developed by Selex ES, a Finmeccanica Company. An extensive experimental evaluation of CASPER is presented. The obtained results show (i) a very low percentage of false positives over both normal and under stress conditions, and (ii) a sufficiently high failure prediction time that allows the system to apply appropriate recovery procedures

    Online failure prediction in air traffic control systems

    Get PDF
    This thesis introduces a novel approach to online failure prediction for mission critical distributed systems that has the distinctive features to be black-box, non-intrusive and online. The approach combines Complex Event Processing (CEP) and Hidden Markov Models (HMM) so as to analyze symptoms of failures that might occur in the form of anomalous conditions of performance metrics identified for such purpose. The thesis presents an architecture named CASPER, based on CEP and HMM, that relies on sniffed information from the communication network of a mission critical system, only, for predicting anomalies that can lead to software failures. An instance of Casper has been implemented, trained and tuned to monitor a real Air Traffic Control (ATC) system developed by Selex ES, a Finmeccanica Company. An extensive experimental evaluation of CASPER is presented. The obtained results show (i) a very low percentage of false positives over both normal and under stress conditions, and (ii) a sufficiently high failure prediction time that allows the system to apply appropriate recovery procedures

    Real-time fault diagnosis and fault-tolerant control

    Full text link

    Optimising maintenance operations in photovoltaic solar plants using data analysis for predictive maintenance

    Get PDF
    In PV (photovoltaic) solar power plants, high reliability of critical assets must be ensured— these include inverters, which combine the power from multiple solar cell modules. While avoiding unexpected failures and downtime, maintenance schedules aim to take advantage of the full equipment lifetime. Predictive maintenance schedules trigger maintenance actions by modelling the current equipment condition and the time until a particular failure type occurs, known as residual useful lifetime (RUL). However, predicting the RUL of an equipment is complex in this case since the equipment condition is not directly measurable; it is affected by numerous error types with corresponding influencing factors. This work compares statistical and machine learning models using sensor and weather data for the purpose of optimising maintenance decisions. Our methods allow the user to perform maintenance before failure occurs and hence, contribute to maximising reliability. We present two distinct data handling and analysis pipelines for predictive maintenance: The first method is based on a Hidden Markov Model, which estimates the degree of degradation on a discrete scale of latent states. The multivariate input time series is transformed using PCA to reduce dimensionality. This approach delivers a profound statistical model providing insight into the temporal dynamics of the degradation process. The second method pursues a machine learning approach by using a Random Forest Regression algorithm, on top of a feature selection step from time series data. Both methods are assessed by their abilities to predict the RUL from a random point in time prior to failure. The machine learning approach is able to exploit its favourable properties in high-dimensional input data and delivers high predictive performance. Further, we discuss qualitative aspects, such as the interpretability of model parameters and results. Both approaches are benchmarked and compared to one another. We conclude that both approaches have practical merits and may contribute to more favourable decisions and optimised maintenance operations.submittedVersionM-D

    End-to-end anomaly detection in stream data

    Get PDF
    Nowadays, huge volumes of data are generated with increasing velocity through various systems, applications, and activities. This increases the demand for stream and time series analysis to react to changing conditions in real-time for enhanced efficiency and quality of service delivery as well as upgraded safety and security in private and public sectors. Despite its very rich history, time series anomaly detection is still one of the vital topics in machine learning research and is receiving increasing attention. Identifying hidden patterns and selecting an appropriate model that fits the observed data well and also carries over to unobserved data is not a trivial task. Due to the increasing diversity of data sources and associated stochastic processes, this pivotal data analysis topic is loaded with various challenges like complex latent patterns, concept drift, and overfitting that may mislead the model and cause a high false alarm rate. Handling these challenges leads the advanced anomaly detection methods to develop sophisticated decision logic, which turns them into mysterious and inexplicable black-boxes. Contrary to this trend, end-users expect transparency and verifiability to trust a model and the outcomes it produces. Also, pointing the users to the most anomalous/malicious areas of time series and causal features could save them time, energy, and money. For the mentioned reasons, this thesis is addressing the crucial challenges in an end-to-end pipeline of stream-based anomaly detection through the three essential phases of behavior prediction, inference, and interpretation. The first step is focused on devising a time series model that leads to high average accuracy as well as small error deviation. On this basis, we propose higher-quality anomaly detection and scoring techniques that utilize the related contexts to reclassify the observations and post-pruning the unjustified events. Last but not least, we make the predictive process transparent and verifiable by providing meaningful reasoning behind its generated results based on the understandable concepts by a human. The provided insight can pinpoint the anomalous regions of time series and explain why the current status of a system has been flagged as anomalous. Stream-based anomaly detection research is a principal area of innovation to support our economy, security, and even the safety and health of societies worldwide. We believe our proposed analysis techniques can contribute to building a situational awareness platform and open new perspectives in a variety of domains like cybersecurity, and health

    Machine learning for smart building applications: Review and taxonomy

    Get PDF
    © 2019 Association for Computing Machinery. The use of machine learning (ML) in smart building applications is reviewed in this article. We split existing solutions into two main classes: occupant-centric versus energy/devices-centric. The first class groups solutions that use ML for aspects related to the occupants, including (1) occupancy estimation and identification, (2) activity recognition, and (3) estimating preferences and behavior. The second class groups solutions that use ML to estimate aspects related either to energy or devices. They are divided into three categories: (1) energy profiling and demand estimation, (2) appliances profiling and fault detection, and (3) inference on sensors. Solutions in each category are presented, discussed, and compared; open perspectives and research trends are discussed as well. Compared to related state-of-the-art survey papers, the contribution herein is to provide a comprehensive and holistic review from the ML perspectives rather than architectural and technical aspects of existing building management systems. This is by considering all types of ML tools, buildings, and several categories of applications, and by structuring the taxonomy accordingly. The article ends with a summary discussion of the presented works, with focus on lessons learned, challenges, open and future directions of research in this field

    Fast human behavior analysis for scene understanding

    Get PDF
    Human behavior analysis has become an active topic of great interest and relevance for a number of applications and areas of research. The research in recent years has been considerably driven by the growing level of criminal behavior in large urban areas and increase of terroristic actions. Also, accurate behavior studies have been applied to sports analysis systems and are emerging in healthcare. When compared to conventional action recognition used in security applications, human behavior analysis techniques designed for embedded applications should satisfy the following technical requirements: (1) Behavior analysis should provide scalable and robust results; (2) High-processing efficiency to achieve (near) real-time operation with low-cost hardware; (3) Extensibility for multiple-camera setup including 3-D modeling to facilitate human behavior understanding and description in various events. The key to our problem statement is that we intend to improve behavior analysis performance while preserving the efficiency of the designed techniques, to allow implementation in embedded environments. More specifically, we look into (1) fast multi-level algorithms incorporating specific domain knowledge, and (2) 3-D configuration techniques for overall enhanced performance. If possible, we explore the performance of the current behavior-analysis techniques for improving accuracy and scalability. To fulfill the above technical requirements and tackle the research problems, we propose a flexible behavior-analysis framework consisting of three processing-layers: (1) pixel-based processing (background modeling with pixel labeling), (2) object-based modeling (human detection, tracking and posture analysis), and (3) event-based analysis (semantic event understanding). In Chapter 3, we specifically contribute to the analysis of individual human behavior. A novel body representation is proposed for posture classification based on a silhouette feature. Only pure binary-shape information is used for posture classification without texture/color or any explicit body models. To this end, we have studied an efficient HV-PCA shape-based descriptor with temporal modeling, which achieves a posture-recognition accuracy rate of about 86% and outperforms other existing proposals. As our human motion scheme is efficient and achieves a fast performance (6-8 frames/second), it enables a fast surveillance system or further analysis of human behavior. In addition, a body-part detection approach is presented. The color and body ratio are combined to provide clues for human body detection and classification. The conventional assumption of up-right body posture is not required. Afterwards, we design and construct a specific framework for fast algorithms and apply them in two applications: tennis sports analysis and surveillance. Chapter 4 deals with tennis sports analysis and presents an automatic real-time system for multi-level analysis of tennis video sequences. First, we employ a 3-D camera model to bridge the pixel-level, object-level and scene-level of tennis sports analysis. Second, a weighted linear model combining the visual cues in the real-world domain is proposed to identify various events. The experimentally found event extraction rate of the system is about 90%. Also, audio signals are combined to enhance the scene analysis performance. The complete proposed application is efficient enough to obtain a real-time or near real-time performance (2-3 frames/second for 720Ă—576 resolution, and 5-7 frames/second for 320Ă—240 resolution, with a P-IV PC running at 3GHz). Chapter 5 addresses surveillance and presents a full real-time behavior-analysis framework, featuring layers at pixel, object, event and visualization level. More specifically, this framework captures the human motion, classifies its posture, infers the semantic event exploiting interaction modeling, and performs the 3-D scene reconstruction. We have introduced our system design based on a specific software architecture, by employing the well-known "4+1" view model. In addition, human behavior analysis algorithms are directly designed for real-time operation and embedded in an experimental runtime AV content-analysis architecture. This executable system is designed to be generic for multiple streaming applications with component-based architectures. To evaluate the performance, we have applied this networked system in a single-camera setup. The experimental platform operates with two Pentium Quadcore engines (2.33 GHz) and 4-GB memory. Performance evaluations have shown that this networked framework is efficient and achieves a fast performance (13-15 frames/second) for monocular video sequences. Moreover, a dual-camera setup is tested within the behavior-analysis framework. After automatic camera calibration is conducted, the 3-D reconstruction and communication among different cameras are achieved. The extra view in the multi-camera setup improves the human tracking and event detection in case of occlusion. This extension of multiple-view fusion improves the event-based semantic analysis by 8.3-16.7% in accuracy rate. The detailed studies of two experimental intelligent applications, i.e., tennis sports analysis and surveillance, have proven their value in several extensive tests in the framework of the European Candela and Cantata ITEA research programs, where our proposed system has demonstrated competitive performance with respect to accuracy and efficiency
    • …
    corecore