705 research outputs found

    LSTM Deep Neural Networks Postfiltering for Improving the Quality of Synthetic Voices

    Full text link
    Recent developments in speech synthesis have produced systems capable of outcome intelligible speech, but now researchers strive to create models that more accurately mimic human voices. One such development is the incorporation of multiple linguistic styles in various languages and accents. HMM-based Speech Synthesis is of great interest to many researchers, due to its ability to produce sophisticated features with small footprint. Despite such progress, its quality has not yet reached the level of the predominant unit-selection approaches that choose and concatenate recordings of real speech. Recent efforts have been made in the direction of improving these systems. In this paper we present the application of Long-Short Term Memory Deep Neural Networks as a Postfiltering step of HMM-based speech synthesis, in order to obtain closer spectral characteristics to those of natural speech. The results show how HMM-voices could be improved using this approach.Comment: 5 pages, 5 figure

    Automatic Speech Recognition for Low-Resource and Morphologically Complex Languages

    Get PDF
    The application of deep neural networks to the task of acoustic modeling for automatic speech recognition (ASR) has resulted in dramatic decreases of word error rates, allowing for the use of this technology in smart phones and personal home assistants in high-resource languages. Developing ASR models of this caliber, however, requires hundreds or thousands of hours of transcribed speech recordings, which presents challenges for most of the world’s languages. In this work, we investigate the applicability of three distinct architectures that have previously been used for ASR in languages with limited training resources. We tested these architectures using publicly available ASR datasets for several typologically and orthographically diverse languages, whose data was produced under a variety of conditions using different speech collection strategies, practices, and equipment. Additionally, we performed data augmentation on this audio, such that the amount of data could increase nearly tenfold, synthetically creating higher resource training. The architectures and their individual components were modified, and parameters explored such that we might find a best-fit combination of features and modeling schemas to fit a specific language morphology. Our results point to the importance of considering language-specific and corpus-specific factors and experimenting with multiple approaches when developing ASR systems for resource-constrained languages

    Language independent and unsupervised acoustic models for speech recognition and keyword spotting

    Get PDF
    Copyright © 2014 ISCA. Developing high-performance speech processing systems for low-resource languages is very challenging. One approach to address the lack of resources is to make use of data from multiple languages. A popular direction in recent years is to train a multi-language bottleneck DNN. Language dependent and/or multi-language (all training languages) Tandem acoustic models (AM) are then trained. This work considers a particular scenario where the target language is unseen in multi-language training and has limited language model training data, a limited lexicon, and acoustic training data without transcriptions. A zero acoustic resources case is first described where a multilanguage AM is directly applied, as a language independent AM (LIAM), to an unseen language. Secondly, in an unsupervised approach a LIAM is used to obtain hypotheses for the target language acoustic data transcriptions which are then used in training a language dependent AM. 3 languages from the IARPA Babel project are used for assessment: Vietnamese, Haitian Creole and Bengali. Performance of the zero acoustic resources system is found to be poor, with keyword spotting at best 60% of language dependent performance. Unsupervised language dependent training yields performance gains. For one language (Haitian Creole) the Babel target is achieved on the in-vocabulary data

    Automatic Speech Recognition for Low-resource Languages and Accents Using Multilingual and Crosslingual Information

    Get PDF
    This thesis explores methods to rapidly bootstrap automatic speech recognition systems for languages, which lack resources for speech and language processing. We focus on finding approaches which allow using data from multiple languages to improve the performance for those languages on different levels, such as feature extraction, acoustic modeling and language modeling. Under application aspects, this thesis also includes research work on non-native and Code-Switching speech

    A Measure of Smoothness in Synthesized Speech

    Get PDF
    The articulators typically move smoothly during speech production. Therefore, speech features of natural speech are generally smooth. However, over-smoothness causes "muffleness" and, hence, reduction in ability to identify emotions/expressions/styles in synthesized speech that can affect the perception of naturalness in synthesized speech. In the literature, statistical variances of static spectral features have been used as a measure of smoothness in synthesized speech but they are not sufficient enough. This paper proposes another measure of smoothness that can be efficiently applied to evaluate the smoothness of synthesized speech. Experiments showed that the proposed measure is reliable and efficient to measure the smoothness of different kinds of synthesized speech
    corecore