310 research outputs found

    From Sensing to Predictions and Database Technique: A Review of TV White Space Information Acquisition in Cognitive Radio Networks

    Get PDF
    Strategies to acquire white space information is the single most significant functionality in cognitive radio networks (CRNs) and as such, it has gone some evolution to enhance information accuracy. The evolution trends are spectrum sensing, prediction algorithm and recently, geo-location database technique. Previously, spectrum sensing was the main technique for detecting the presence/absence of a primary user (PU) signal in a given radio frequency (RF) spectrum. However, this expectation could not materialized as a result of numerous technical challenges ranging from hardware imperfections to RF signal impairments. To convey the evolutionary trends in the development of white space information, we present a survey of the contemporary advancements in PU detection with emphasis on the practical deployment of CRNs i.e. Television white space (TVWS) networks. It is found that geo-location database is the most reliable technique to acquire TVWS information although, it is financially driven. Finally, using financially driven database model, this study compared the data-rate and spectral efficiency of FCC and Ofcom TV channelization. It was discovered that Ofcom TV channelization outperforms FCC TV channelization as a result of having higher spectrum bandwidth. We proposed the adoption of an all-inclusive TVWS information acquisition model as the future research direction for TVWS information acquisition techniques

    Spectrum prediction in dynamic spectrum access systems

    Get PDF
    Despite the remarkable foreseen advancements in maximizing network capacities, the in-expansible nature of radio spectrum exposed outdated spectrum management techniques as a core limitation. Fixed spectrum allocation inefficiency has generated a proliferation of dynamic spectrum access solutions to accommodate the growing demand for wireless, and mobile applications. This research primarily focuses on spectrum occupancy prediction which equip dynamic users with the cognitive ability to identify and exploit instantaneous availability of spectrum opportunities. The first part of this research is devoted to identifying candidate occupancy prediction techniques suitable for SOP scenarios are extensively analysed, and a theoretical based model selection framework is consolidated. The performance of single user Bayesian/Markov based techniques both analytically and numerically. Understanding performance bounds of Bayesian/Markov prediction allows the development of efficient occupancy prediction models. The third and fourth parts of this research investigates cooperative decision and data-based occupancy prediction. The expected cooperative prediction accuracy gain is addressed based on the single user prediction model. Specifically, the third contributions provide analytical approximations of single user, as well as cooperative hard fusion based spectrum prediction. Finally, the forth contribution shows soft fusion is superior and more robust compared to hard fusion cooperative prediction in terms of prediction accuracy. Throughout this research, case study analysis is provided to evaluate the performance of the proposed approaches. Analytical approaches and Monte-Carlo simulation are compared for the performance metric of interest. Remarkably, the case study analysis confirmed that the statistical approximation can predict the performance of local and hard fusion cooperative prediction accurately, capturing all the essential aspects of signal detection performance, temporal dependency of spectrum occupancy as well as the finite nature of the network

    Statistical spectrum occupancy prediction for dynamic spectrum access: a classification

    Get PDF
    Spectrum scarcity due to inefficient utilisation has ignited a plethora of dynamic spectrum access solutions to accommodate the expanding demand for future wireless networks. Dynamic spectrum access systems allow secondary users to utilise spectrum bands owned by primary users if the resulting interference is kept below a pre-designated threshold. Primary and secondary user spectrum occupancy patterns determine if minimum interference and seamless communications can be guaranteed. Thus, spectrum occupancy prediction is a key component of an optimised dynamic spectrum access system. Spectrum occupancy prediction recently received significant attention in the wireless communications literature. Nevertheless, a single consolidated literature source on statistical spectrum occupancy prediction is not yet available in the open literature. Our main contribution in this paper is to provide a statistical prediction classification framework to categorise and assess current spectrum occupancy models. An overview of statistical sequential prediction is presented first. This statistical background is used to analyse current techniques for spectrum occupancy prediction. This review also extends spectrum occupancy prediction to include cooperative prediction. Finally, theoretical and implementation challenges are discussed

    From Sensing to Predictions and Database Technique: A Review of TV White Space Information Acquisition in Cognitive Radio Networks

    Get PDF
    Strategies to acquire white space information is the single most significant functionality in cognitive radio networks (CRNs) and as such, it has gone some evolution to enhance information accuracy. The evolution trends are spectrum sensing, prediction algorithm and recently, geo‐location database technique. Previously, spectrum sensing was the main technique for detecting the presence/absence of a primary user (PU) signal in a given radio frequency (RF) spectrum. However, this expectation could not materialized as a result of numerous technical challenges ranging from hardware imperfections to RF signal impairments. To convey the evolutionary trends in the development of white space information, we present a survey of the contemporary advancements in PU detection with emphasis on the practical deployment of CRNs i.e. Television white space (TVWS) networks. It is found that geo‐location database is the most reliable technique to acquire TVWS information although, it is financially driven. Finally, using financially driven database model, this study compared the data‐rate and spectral efficiency of FCC and Ofcom TV channelization. It was discovered that Ofcom TV channelization outperforms FCC TV channelization as a result of having higher spectrum bandwidth. We proposed the adoption of an allinclusive TVWS information acquisition model as the future research direction for TVWS information acquisition techniques

    Enhancing Spectrum Utilization in Dynamic Cognitive Radio Systems

    Get PDF
    Cognitive radio (CR) is regarded as a viable solution to enabling flexible use of the frequency spectrum in future generations of wireless systems by allowing unlicensed secondary users (SU) to access licensed spectrum under the specific condition that no harmful interference be caused to the licensed primary users (PU) of the spectrum. In practical scenarios, the knowledge of PU activity is unknown to CRs and radio environments are mostly imperfect due to various issues such as noise uncertainty and multipath fadings. Therefore, important functionalities of CR systems are to efficiently detect availability of radio spectrum as well as to avoid generating interference to PUs, by missing detection of active PU signals. Typically, CR systems are expected to be equipped with smart capabilities which include sensing, adapting, learning, and awareness concerned with spectrum opportunity access, radio environments, and wireless communications operations, such that SUs equipped with CRs can efficiently utilize spectrum opportunities with high quality of services. Most existing researches working on CR focus on improving spectrum sensing through performance measures such as the probabilities of PU detection and false alarm but none of them explicitly studies the improvement in the actual spectrum utilization. Motivated by this perspective, the main objective of the dissertation is to explore new techniques on the physical layer of dynamic CR systems, that can enhance actual utilization of spectrum opportunities and awareness on the performance of CR systems. Specifically, this dissertation investigates utilization of spectrum opportunities in dynamic scenarios, where a licensed radio spectrum is available for limited time and also analyzes how it is affected by various parameters. The dissertation proposes three new methods for adaptive spectrum sensing which improve dynamic utilization of idle radio spectrum as well as the detection of active PUs in comparison to the conventional method with fixed spectrum sensing size. Moreover, this dissertation presents a new approach for optimizing cooperative spectrum sensing performance and also proposes the use of hidden Markov models (HMMs) to enabling performance awareness for local and cooperative spectrum sensing schemes, leading to improved spectrum utilization. All the contributions are illustrated with numerical results obtained from extensive simulations which confirm their effectiveness for practical applications

    Novel QoS-aware proactive spectrum access techniques for cognitive radio using machine learning

    Get PDF
    Traditional cognitive radio (CR) spectrum access techniques have been primitive and inefficient due to being blind to the occupancy conditions of the spectrum bands to be sensed. In addition, current spectrum access techniques are also unable to detect network changes or even consider the requirements of unlicensed users, leading to a poorer quality of service (QoS) and excessive latency. As user-specific approaches will play a key role in future wireless communication networks, the conventional CR spectrum access should also be updated in order to be more effective and agile. In this paper, a comprehensive and novel solution is proposed to decrease the sensing latency and to make the CR networks (CRNs) aware of unlicensed user requirements. As such, a proactive process with a novel QoS-based optimization phase is proposed, consisting of two different decision strategies. Initially, future traffic loads of the different radio access technologies (RATs), occupying different bands of the spectrum, are predicted using the artificial neural networks (ANNs). Based on these predictions, two strategies are proposed. In the first one, which solely focuses on latency, a virtual wideband (WB) sensing approach is developed, where predicted relative traffic loads in WB are exploited to enable narrowband (NB) sensing. The second one, based on Q -learning, focuses not only on minimizing the sensing latency but also on satisfying other user requirements. The results reveal that the first strategy manages to significantly reduce the sensing latency of the random selection process by 59.6%, while the Q -learning assisted second strategy enhanced the full-satisfaction by up to 95.7%
    corecore