6 research outputs found

    Human movements evaluation using depth sensors

    Get PDF
    ABSTRACT: This works explore the use of depth sensor data to determine whether a human being is executing a movement according to an specification. The sensor chosen to collect data was a kinect V1. Several different techniques are explored: Finite State Machines, Multi-Dimensional Dynamic Time Warping, discrete Hidden Markov Models and Continuous Hidden Markov Models. A set of activities chosen according to an expert’s criteria is used to test the applicability of the different approaches to the task at hand. Results are presented for each technique

    A review of computer vision-based approaches for physical rehabilitation and assessment

    Get PDF
    The computer vision community has extensively researched the area of human motion analysis, which primarily focuses on pose estimation, activity recognition, pose or gesture recognition and so on. However for many applications, like monitoring of functional rehabilitation of patients with musculo skeletal or physical impairments, the requirement is to comparatively evaluate human motion. In this survey, we capture important literature on vision-based monitoring and physical rehabilitation that focuses on comparative evaluation of human motion during the past two decades and discuss the state of current research in this area. Unlike other reviews in this area, which are written from a clinical objective, this article presents research in this area from a computer vision application perspective. We propose our own taxonomy of computer vision-based rehabilitation and assessment research which are further divided into sub-categories to capture novelties of each research. The review discusses the challenges of this domain due to the wide ranging human motion abnormalities and difficulty in automatically assessing those abnormalities. Finally, suggestions on the future direction of research are offered

    Rehabilitation Exergames: use of motion sensing and machine learning to quantify exercise performance in healthy volunteers

    Get PDF
    Background: Performing physiotherapy exercises in front of a physiotherapist yields qualitative assessment notes and immediate feedback. However, practicing the exercises at home lacks feedback on how well or not patients are performing the prescribed tasks. The absence of proper feedback might result in patients doing the exercises incorrectly, which could worsen their condition. Objective: We propose the use of two machine learning algorithms, namely Dynamic Time Warping (DTW) and Hidden Markov Model (HMM), to quantitively assess the patient’s performance with respects to a reference. Methods: Movement data were recorded using a Kinect depth sensor, capable of detecting 25 joints in the human skeleton model, and were compared to those of a reference. 16 participants were recruited to perform four different exercises: shoulder abduction, hip abduction, lunge, and sit-to-stand. Their performance was compared to that of a physiotherapist as a reference. Results: Both algorithms show a similar trend in assessing participants' performance. However, their sensitivity level was different. While DTW was more sensitive to small changes, HMM captured a general view of the performance, being less sensitive to the details. Conclusions: The chosen algorithms demonstrated their capacity to objectively assess physical therapy performances. HMM may be more suitable in the early stages of a physiotherapy program to capture and report general performance, whilst DTW could be used later on to focus on the detail
    corecore