156 research outputs found

    HP-CERTI: Towards a high performance, high availability open source RTI for composable simulations (04F-SIW-014)

    Get PDF
    Composing simulations of complex systems from already existing simulation components remains a challenging issue. Motivations for composable simulation include generation of a given federation driven by operational requirements provided "on the fly". The High Level Architecture, initially developed for designing fully distributed simulations, can be considered as an interoperability standard for composing simulations from existing components. Requirements for constructing such complex simulations are quite different from those discussed for distributed simulations. Although interoperability and reusability remain essential, both high performance and availability have also to be considered to fulfill the requirements of the end user. ONERA is currently designing a High Performance / High Availability HLA Run-time Infrastructure from its open source implementation of HLA 1.3 specifications. HP-CERTI is a software package including two main components: the first one, SHM-CERTI, provides an optimized version of CERTI based on a shared memory communication scheme; the second one, Kerrighed-CERTI, allows the deployment of CERTI through the control of the Kerrighed Single System Image operating system for clusters, currently designed by IRISA. This paper describes the design of both high performance and availability Runtime Infrastructures, focusing on the architecture of SHM-CERTI. This work is carried out in the context of the COCA (High Performance Distributed Simulation and Models Reuse) Project, sponsored by the DGA/STTC (Délégation Générale pour l'Armement/Service des Stratégies Techniques et des Technologies Communes) of the French Ministry of Defense

    Multiresolution modeling and simulation of an air-ground combat application

    Get PDF
    The High Level Architecture (HLA) establishes a common modeling and simulation framework facilitating interoperability and reuse of simulation components. Since 1996, ONERA (French Aeronautics and Space Research Centre) carries out several studies on HLA in order to gain a better understanding of the underlying mechanisms of HLA implementations. The first critical step of this initiative was to develop our own RTI from the HLA specifications. In order to evaluate the cost of making a transition from legacy simulations to HLA, we first developed an HLA federation simulating an air-ground combat involving a set of aircraft's engaged against a surface to air defense system. Current studies on HLA distributed simulation include security, WAN simulations and multiresolution. Conventional simulations represent entities at just one single level of resolution. Multiresolution representation of entities consists in maintaining multiple and concurrent representations of entities. In this paper we address the problem of how HLA services may allow to achieve multiresolution modeling and simulation. Our goal is not to provide a general framework as a basis for designing simulations of entities at different levels of resolution concurrently. We focus on experience feedback we have obtained by migrating a single level resolution HLA federation to a multi-level resolution federation. The selected application is an air-ground combat simulation involving aggregated patrols of aircraft's engaged against a surface to air defense system. In this paper, we briefly describe the air-ground combat simulation application. We then detail the multiresolution representation of entities (patrols and aircraft's), and discuss the chosen mechanisms allowing triggering aggregation from an entity-level representation, and conversely, triggering disaggregation from an aggregate representation. We focus on the HLA services we have selected to maintain several levels of representation concurrently and on methodological issues in designing multiresolution HLA simulations. We have tackled some difficulties and we propose a new HLA service that should make easier the user's task. This multiresolution management service can be added to our RTI or written by using existing HLA services. Finally, future trends are discussed

    Fault-Tolerant Adaptive Parallel and Distributed Simulation

    Full text link
    Discrete Event Simulation is a widely used technique that is used to model and analyze complex systems in many fields of science and engineering. The increasingly large size of simulation models poses a serious computational challenge, since the time needed to run a simulation can be prohibitively large. For this reason, Parallel and Distributes Simulation techniques have been proposed to take advantage of multiple execution units which are found in multicore processors, cluster of workstations or HPC systems. The current generation of HPC systems includes hundreds of thousands of computing nodes and a vast amount of ancillary components. Despite improvements in manufacturing processes, failures of some components are frequent, and the situation will get worse as larger systems are built. In this paper we describe FT-GAIA, a software-based fault-tolerant extension of the GAIA/ART\`IS parallel simulation middleware. FT-GAIA transparently replicates simulation entities and distributes them on multiple execution nodes. This allows the simulation to tolerate crash-failures of computing nodes; furthermore, FT-GAIA offers some protection against byzantine failures since synchronization messages are replicated as well, so that the receiving entity can identify and discard corrupted messages. We provide an experimental evaluation of FT-GAIA on a running prototype. Results show that a high degree of fault tolerance can be achieved, at the cost of a moderate increase in the computational load of the execution units.Comment: Proceedings of the IEEE/ACM International Symposium on Distributed Simulation and Real Time Applications (DS-RT 2016

    Commercial-off-the-shelf simulation package interoperability: Issues and futures

    Get PDF
    Commercial-Off-The-Shelf Simulation Packages (CSPs) are widely used in industry to simulate discrete-event models. Interoperability of CSPs requires the use of distributed simulation techniques. Literature presents us with many examples of achieving CSP interoperability using bespoke solutions. However, for the wider adoption of CSP-based distributed simulation it is essential that, first and foremost, a standard for CSP interoperability be created, and secondly, these standards are adhered to by the CSP vendors. This advanced tutorial is on an emerging standard relating to CSP interoperability. It gives an overview of this standard and presents case studies that implement some of the proposed standards. Furthermore, interoperability is discussed in relation to large and complex models developed using CSPs that require large amount of computing resources. It is hoped that this tutorial will inform the simulation community of the issues associated with CSP interoperability, the importance of these standards and its future

    Fault Tolerant Adaptive Parallel and Distributed Simulation through Functional Replication

    Full text link
    This paper presents FT-GAIA, a software-based fault-tolerant parallel and distributed simulation middleware. FT-GAIA has being designed to reliably handle Parallel And Distributed Simulation (PADS) models, which are needed to properly simulate and analyze complex systems arising in any kind of scientific or engineering field. PADS takes advantage of multiple execution units run in multicore processors, cluster of workstations or HPC systems. However, large computing systems, such as HPC systems that include hundreds of thousands of computing nodes, have to handle frequent failures of some components. To cope with this issue, FT-GAIA transparently replicates simulation entities and distributes them on multiple execution nodes. This allows the simulation to tolerate crash-failures of computing nodes. Moreover, FT-GAIA offers some protection against Byzantine failures, since interaction messages among the simulated entities are replicated as well, so that the receiving entity can identify and discard corrupted messages. Results from an analytical model and from an experimental evaluation show that FT-GAIA provides a high degree of fault tolerance, at the cost of a moderate increase in the computational load of the execution units.Comment: arXiv admin note: substantial text overlap with arXiv:1606.0731

    Towards Grid-Wide Modeling and Simulation

    Get PDF
    Modeling and simulation permeate all areas of business, science and engineering. With the increase in the scale and complexity of simulations, large amounts of computational resources are required, and collaborative model development is needed, as multiple parties could be involved in the development process. The Grid provides a platform for coordinated resource sharing and application development and execution. In this paper, we survey existing technologies in modeling and simulation, and we focus on interoperability and composability of simulation components for both simulation development and execution. We also present our recent work on an HLA-based simulation framework on the Grid, and discuss the issues to achieve composability.Singapore-MIT Alliance (SMA

    Managing Bandwidth and Traffic via Bundling and Filtration in Large-Scale Distributed Simulations

    Get PDF
    Research has shown that bandwidth can be a limiting factor in the performance of distributed simulations. The Air Force\u27s Distributed Mission Operations Center (DMOC) periodically hosts one of the largest distributed simulation events in the world. The engineers at the DMOC have dealt with the difficult problem of limited bandwidth by implementing application level filters that process all DIS PDUs between the various networks connected to the exercise. This thesis examines their implemented filter and proposes: adaptive range-based filtering and bundling together of PDUs. The goals are to reduce the number of PDUs passed by the adaptive filter and to reduce network overhead and the total amount of data transferred by maximizing packet size up to the MTU. The proposed changes were implemented and logged data from previous events were used on a test network in order to measure the improvement from the base filter to the improved filter. The results showed that the adaptive range based filter was effective, though minimally so, and that the PDU bundling resulted in a reduction of 17% to 20% of the total traffic transmitted across the network

    CERTI, an Open Source RTI, why and how

    Get PDF
    CERTI is an HLA RTI developed since 1996 by ONERA, the French Aerospace Lab. The initial purpose of CERTI was to develop a home made RTI in order to: learn HLA usage and HLA RTI internals (e.g. time management), have total control over source code in order to use this particular RTI with specific modifications in several research projects (security mechanism, multi-resolution, high performance distributed simulation...). CERTI became open source in 2002: https://savannah.nongnu.org/projects/certi. Since then, Open Source CERTI project has had variable activity periods, mostly driven by research project needs and funds. CERTI development has started again since the end of 2006, with an increased interest from the open source user community. After a brief status survey of CERTI, this presentation will focus on the Open Source objectives of CERTI and explain why this is not a product but a project driven OSS initiative, pushed by a Public establishment like ONERA. We will further explain how open sourceness CERTI stimulates its development and the community itself and why every stakeholder benefits from this

    Towards an Architecture Proposal for Federation of Distributed DES Simulators

    Get PDF
    The simulation of large and complex Discrete Event Systems (DESs) increasingly imposes more demanding and urgent requirements on two aspects accepted as critical: (1) Intensive use of models of the simulated system that can be exploited in all phases of its life cycle where simulation can be used, and methodologies for these purposes; (2) Adaptation of simulation techniques to HPC infrastructures, as a method to improve simulation efficiency and to have scalable simulation environments. This paper proposes a Model Driven Engineering approach (MDE) based on Petri Nets (PNs) as formal model. This approach proposes a domain specific language based on modular PNs from which efficient distributed simulation code is generated in an automatic way. The distributed simulator is constructed over generic simulation engines of PNs, each one containing a data structure representing a piece of net and its simulation state. The simulation engine is called simbot and versions of it are available for different platforms. The proposed architecture allows, in an efficient way, a dynamic load balancing of the simulation work because the moving of PN pieces can be realized by moving a small number of integers representing the subnet and its state
    corecore