66 research outputs found

    Bio-Optical Modeling in a Tropical Hypersaline Lagoon Environment

    Get PDF
    In this chapter, we attempted to present an overview of the use of remote sensing to monitor water quality parameters, mainly chlorophyll-a (chl-a) and turbidity. We summarized the main concepts of bio-optical modeling and presented a case study of the application of the Hyperspectral Imager for the Coastal Ocean (HICO) for the monitoring of water quality in a tropical hypersaline aquatic environment. Using HICO, we evaluated a set of different semi-empirical bio-optical algorithms for chl-a and turbidity estimation developed for inland and oceanic waters in the Araruama Lagoon, RJ, Brazil, which is an extreme environment due to its high salinity values. We also developed an empirical algorithm for both water quality parameters and compared the performances. Results showed that for chl-a estimation all models have a low performance with a normalized root mean square error (NRMSE) varying from 24.13 to 30.46. For turbidity, the bio-optical algorithms showed a better performance with the NRMSE between 15.49 and 28.04. Overall, these results highlight the importance of including extreme environments, such as the Araruama Lagoon, on the validation of bio-optical algorithms as well as the need for new orbital hyperspectral sensors which will improve the development of the field

    Detection and Monitoring of Marine Pollution Using Remote Sensing Technologies

    Get PDF
    Recently, the marine habitat has been under pollution threat, which impacts many human activities as well as human life. Increasing concerns about pollution levels in the oceans and coastal regions have led to multiple approaches for measuring and mitigating marine pollution, in order to achieve sustainable marine water quality. Satellite remote sensing, covering large and remote areas, is considered useful for detecting and monitoring marine pollution. Recent developments in sensor technologies have transformed remote sensing into an effective means of monitoring marine areas. Different remote sensing platforms and sensors have their own capabilities for mapping and monitoring water pollution of different types, characteristics, and concentrations. This chapter will discuss and elaborate the merits and limitations of these remote sensing techniques for mapping oil pollutants, suspended solid concentrations, algal blooms, and floating plastic waste in marine waters

    Towards high fidelity mapping of global inland water quality using earth observation data

    Get PDF
    This body of work aims to contribute advancements towards developing globally applicable water quality retrieval models using Earth Observation data for freshwater systems. Eutrophication and increasing prevalence of potentially toxic algal blooms among global inland water bodies have become a major ecological concersn and require direct attention. There is now a growing necessity to develop pragmatic approaches that allow timely and effective extrapolation of local processes, to spatially resolved global products. This study provides one of the first assessments of the state-ofthe-art for trophic status (chlorophyll-a) retrievals for small water bodies using Sentinel-3 Ocean and Land Color Imager (OLCI). Multiple fieldwork campaigns were undertaken for the collection of common aquatic biogeophysical and bio-optical parameters that were used to validate current atmospheric correction and chlorophyll-a retrieval algorithms. The study highlighted the difficulties of obtaining robust retrieval estimates from a coarse spatial resolution sensor from highly variable eutrophic water bodies. Atmospheric correction remains a difficult challenge to operational freshwater monitoring, however, the study further validated previous work confirming applicability of simple, empirically derived retrieval algorithms using top-of-atmosphere data. The apparent scarcity of paired in-situ optical and biogeophysical data for productive inland waters also hinders our capability to develop and validate robust retrieval algorithms. Radiative transfer modeling was used to fill this gap through the development of a novel synthetic dataset of top-of-atmosphere and bottom-of-atmosphere reflectances, which attempts to encompass the immense natural optical variability present in inland waters. Novel aspects of the synthetic dataset include: 1) physics-based, two-layered, size and type specific phytoplankton IOPs for mixed eukaryotic/cyanobacteria 6 assemblages, 2) calculations of mixed assemblage chl-a fluorescence, 3) modeled phycocyanin concentration derived from assemblage based phycocyanin absorption, 4) and paired sensor-specific TOA reflectances which include optically extreme cases and contribution of green vegetation adjacency. The synthetic bottom-of-atmosphere reflectance spectra were compiled into 13 distinct optical water types similar to those discovered using in-situ data. Inspection showed similar relationships and ranges of concentrations and inherent optical properties of natural waters. This dataset was used to calculate typical surviving water-leaving signal at top-of-atmosphere, as well as first order calculations of the signal-to-noise-ratio (SNR) for the various optical water types, a first for productive inland waters, as well as conduct a sensitivity analysis of cyanobacteria detection from top-of-atmosphere. Finally, the synthetic dataset was used to train and test four state-of-the-art machine learning architectures for multi-parameter retrieval and cross-sensor capability. Initial results provide reliable estimates of water quality parameters and inherent optical properties over a highly dynamic range of water types, at various spectral and spatial sensor resolutions. It is hoped the results of this work incrementally improves inland water Earth observation on multiple aspects of the forward and inverse modelling process, and provides an improvement in our capabilities for routine, global monitoring of inland water quality

    Assessment of Polymer Atmospheric Correction Algorithm for Hyperspectral Remote Sensing Imagery over Coastal Waters

    Get PDF
    Spaceborne imaging spectroscopy, also called hyperspectral remote sensing, has shown huge potential to improve current water colour retrievals and, thereby, the monitoring of inland and coastal water ecosystems. However, the quality of water colour retrievals strongly depends on successful removal of the atmospheric/surface contributions to the radiance measured by satellite sensors. Atmospheric correction (AC) algorithms are specially designed to handle these effects, but are challenged by the hundreds of narrow spectral bands obtained by hyperspectral sensors. In this paper, we investigate the performance of Polymer AC for hyperspectral remote sensing over coastal waters. Polymer is, in nature, a hyperspectral algorithm that has been mostly applied to multispectral satellite data to date. Polymer was applied to data from the Hyperspectral Imager for the Coastal Ocean (HICO), validated against in situ multispectral (AERONET-OC) and hyperspectral radiometric measurements, and its performance was compared against that of the hyperspectral version of NASA’s standard AC algorithm, L2gen. The match-up analysis demonstrated very good performance of Polymer in the green spectral region. The mean absolute percentage difference across all the visible bands varied between 16% (green spectral region) and 66% (red spectral region). Compared with L2gen, Polymer remote sensing reflectances presented lower uncertainties, greater data coverage, and higher spectral similarity to in situ measurements. These results demonstrate the potential of Polymer to perform AC on hyperspectral satellite data over coastal waters, thus supporting its application in current and future hyperspectral satellite missions

    Sensor capability and atmospheric correction in ocean colour remote sensing

    Get PDF
    © 2015 by the authors; licensee MDPI, Basel, Switzerland. Accurate correction of the corrupting effects of the atmosphere and the water's surface are essential in order to obtain the optical, biological and biogeochemical properties of the water from satellite-based multi-and hyper-spectral sensors. The major challenges now for atmospheric correction are the conditions of turbid coastal and inland waters and areas in which there are strongly-absorbing aerosols. Here, we outline how these issues can be addressed, with a focus on the potential of new sensor technologies and the opportunities for the development of novel algorithms and aerosol models. We review hardware developments, which will provide qualitative and quantitative increases in spectral, spatial, radiometric and temporal data of the Earth, as well as measurements from other sources, such as the Aerosol Robotic Network for Ocean Color (AERONET-OC) stations, bio-optical sensors on Argo (Bio-Argo) floats and polarimeters. We provide an overview of the state of the art in atmospheric correction algorithms, highlight recent advances and discuss the possible potential for hyperspectral data to address the current challenges

    Hyperspectral retrievals of phytoplankton absorption and chlorophyll-a in inland and nearshore coastal waters

    Get PDF
    Following more than two decades of research and developments made possible through various proof-of-concept hyperspectral remote sensing missions, it has been anticipated that hyperspectral imaging would enhance the accuracy of remotely sensed in-water products. This study investigates such expected improvements and demonstrates the utility of hyperspectral radiometric measurements for the retrieval of near-surface phytoplankton properties1, i.e., phytoplankton absorption spectra (aph) and biomass evaluated through examining the concentration of chlorophyll-a (Chla). Using hyperspectral data (409–800 nm at ~5 nm resolution) and a class of neural networks known as Mixture Density Networks (MDN) (Pahlevan et al., 2020), we show that the median error in aph retrievals is reduced two-to-three times (N = 722) compared to that from heritage ocean color algorithms. The median error associated with our aph retrieval across all the visible bands varies between 20 and 30%. Similarly, Chla retrievals exhibit significant improvements (i.e., more than two times; N = 1902), with respect to existing algorithms that rely on select spectral bands. Using an independent matchup dataset acquired near-concurrently with the acquisition of the Hyperspectral Imager for the Coastal Ocean (HICO) images, the models are found to perform well, but at reduced levels due to uncertainties in the atmospheric correction. The mapped spatial distribution of Chla maps and aph spectra for selected HICO swaths further solidify MDNs as promising machine-learning models that have the potential to generate highly accurate aquatic remote sensing products in inland and coastal waters. For aph retrieval to improve further, two immediate research avenues are recommended: a) the network architecture requires additional optimization to enable a simultaneous retrieval of multiple in-water parameters (e.g., aph, Chla, absorption by colored dissolved organic matter), and b) the training dataset should be extended to enhance model generalizability. This feasibility analysis using MDNs provides strong evidence that high-quality, global hyperspectral data will open new pathways toward a better understanding of biodiversity in aquatic ecosystems

    Coastal and Inland Aquatic Data Products for the Hyperspectral Infrared Imager (HyspIRI)

    Get PDF
    The HyspIRI Aquatic Studies Group (HASG) has developed a conceptual list of data products for the HyspIRI mission to support aquatic remote sensing of coastal and inland waters. These data products were based on mission capabilities, characteristics, and expected performance. The topic of coastal and inland water remote sensing is very broad. Thus, this report focuses on aquatic data products to keep the scope of this document manageable. The HyspIRI mission requirements already include the global production of surface reflectance and temperature. Atmospheric correction and surface temperature algorithms, which are critical to aquatic remote sensing, are covered in other mission documents. Hence, these algorithms and their products were not evaluated in this report. In addition, terrestrial products (e.g., land use land cover, dune vegetation, and beach replenishment) were not considered. It is recognized that coastal studies are inherently interdisciplinary across aquatic and terrestrial disciplines. However, products supporting the latter are expected to already be evaluated by other components of the mission. The coastal and inland water data products that were identified by the HASG, covered six major environmental and ecological areas for scientific research and applications: wetlands, shoreline processes, the water surface, the water column, bathymetry and benthic cover types. Accordingly, each candidate product was evaluated for feasibility based on the HyspIRI mission characteristics and whether it was unique and relevant to the HyspIRI science objectives

    A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques

    Get PDF
    Remotely sensed data can reinforce the abilities of water resources researchers and decision makers to monitor waterbodies more effectively. Remote sensing techniques have been widely used to measure the qualitative parameters of waterbodies (i.e., suspended sediments, colored dissolved organic matter (CDOM), chlorophyll-a, and pollutants). A large number of different sensors on board various satellites and other platforms, such as airplanes, are currently used to measure the amount of radiation at different wavelengths reflected from the water’s surface. In this review paper, various properties (spectral, spatial and temporal, etc.) of the more commonly employed spaceborne and airborne sensors are tabulated to be used as a sensor selection guide. Furthermore, this paper investigates the commonly used approaches and sensors employed in evaluating and quantifying the eleven water quality parameters. The parameters include: chlorophyll-a (chl-a), colored dissolved organic matters (CDOM), Secchi disk depth (SDD), turbidity, total suspended sediments (TSS), water temperature (WT), total phosphorus (TP), sea surface salinity (SSS), dissolved oxygen (DO), biochemical oxygen demand (BOD) and chemical oxygen demand (COD)

    Advancing cyanobacteria biomass estimation from hyperspectral observations: Demonstrations with HICO and PRISMA imagery

    Get PDF
    Retrieval of the phycocyanin concentration (PC), a characteristic pigment of, and proxy for, cyanobacteria biomass, from hyperspectral satellite remote sensing measurements is challenging due to uncertainties in the remote sensing reflectance (∆Rrs) resulting from atmospheric correction and instrument radiometric noise. Although several individual algorithms have been proven to capture local variations in cyanobacteria biomass in specific regions, their performance has not been assessed on hyperspectral images from satellite sensors. Our work leverages a machine-learning model, Mixture Density Networks (MDNs), trained on a large (N = 939) dataset of collocated in situ chlorophyll-a concentrations (Chla), PCs, and remote sensing reflectance (Rrs) measurements to estimate PC from all relevant spectral bands. The performance of the developed model is demonstrated via PC maps produced from select images of the Hyperspectral Imager for the Coastal Ocean (HICO) and Italian Space Agency's PRecursore IperSpettrale della Missione Applicativa (PRISMA) using a matchup dataset. As input to the MDN, we incorporate a combination of widely used band ratios (BRs) and line heights (LHs) taken from existing multispectral algorithms, that have been proven for both Chla and PC estimation, as well as novel BRs and LHs to increase the overall cyanobacteria biomass estimation accuracy and reduce the sensitivity to ∆Rrs. When trained on a random half of the dataset, the MDN achieves uncertainties of 44.3%, which is less than half of the uncertainties of all viable optimized multispectral PC algorithms. The MDN is notably better than multispectral algorithms at preventing overestimation on low (10 mg m−3). According to our extensive assessments, the developed model is anticipated to enable practical PC products from PRISMA and HICO, therefore the model is promising for planned hyperspectral missions, such as the Plankton Aerosol and Cloud Ecosystem (PACE). This advancement will enhance the complementary roles of hyperspectral radiometry from satellite and low-altitude platforms for quantifying and monitoring cyanobacteria harmful algal blooms at both large and local spatial scales

    Advancing cyanobacteria biomass estimation from hyperspectral observations: Demonstrations with HICO and PRISMA imagery

    Get PDF
    Retrieval of the phycocyanin concentration (PC), a characteristic pigment of, and proxy for, cyanobacteria biomass, from hyperspectral satellite remote sensing measurements is challenging due to uncertainties in the remote sensing reflectance (∆Rrs) resulting from atmospheric correction and instrument radiometric noise. Although several individual algorithms have been proven to capture local variations in cyanobacteria biomass in specific regions, their performance has not been assessed on hyperspectral images from satellite sensors. Our work leverages a machine-learning model, Mixture Density Networks (MDNs), trained on a large (N = 939) dataset of collocated in situ chlorophyll-a concentrations (Chla), PCs, and remote sensing reflectance (Rrs) measurements to estimate PC from all relevant spectral bands. The performance of the developed model is demonstrated via PC maps produced from select images of the Hyperspectral Imager for the Coastal Ocean (HICO) and Italian Space Agency’s PRecursore IperSpettrale della Missione Applicativa (PRISMA) using a matchup dataset. As input to the MDN, we incorporate a combination of widely used band ratios (BRs) and line heights (LHs) taken from existing multispectral algorithms, that have been proven for both Chla and PC esti�mation, as well as novel BRs and LHs to increase the overall cyanobacteria biomass estimation accuracy and reduce the sensitivity to ∆Rrs. When trained on a random half of the dataset, the MDN achieves uncertainties of 44.3%, which is less than half of the uncertainties of all viable optimized multispectral PC algorithms. The MDN is notably better than multispectral algorithms at preventing overestimation on low (10 mg m− 3). According to our extensive assessments, the developed model is anticipated to enable practical PC products from PRISMA and HICO, therefore the model is promising for planned hyperspectral missions, such as the Plankton Aerosol and Cloud Ecosystem (PACE). This advancement will enhance the complementary roles of hyperspectral radiometry from satellite and low-altitude platforms for quantifying and monitoring cyanobacteria harmful algal blooms at both large and local spatial scales
    corecore