1,205,686 research outputs found

    A ~ 12 kpc HI extension and other HI asymmetries in the isolated galaxy CIG 340 (IC 2487)

    Full text link
    HI kinematic asymmetries are common in late-type galaxies irrespective of environment, although the amplitudes are strikingly low in isolated galaxies. As part of our studies of the HI morphology and kinematics in isolated late-type galaxies we have chosen several very isolated galaxies from the AMIGA sample for HI mapping. Here we present GMRT 21-cm HI line mapping of CIG 340 which was selected because its integrated HI spectrum has a very symmetric profile, Aflux = 1.03. Optical images of the galaxy hinted at a warped disk in contrast to the symmetric integrated HI spectrum profile. Our aim is to determine the extent to which the optical asymmetry is reflected in the resolved HI morphology and kinematics. GMRT observations reveal significant HI morphological asymmetries in CIG 340 despite it's overall symmetric optical form and highly symmetric HI spectrum. The most notable HI features are: 1) a warp in the HI disk (with an optical counterpart), 2) the HI north/south flux ratio = 1.32 is much larger than expected from the integrated HI spectrum profile and 3) a ~ 45" (12 kpc) HI extension, containing ~ 6% of the detected HI mass on the northern side of the disk. We conclude that in isolated galaxies a highly symmetric HI spectrum can mask significant HI morphological asymmetries. The northern HI extension appears to be the result of a recent perturbation (10^8 yr), possibly by a satellite which is now disrupted or projected within the disk. This study provides an important step in our ongoing program to determine the predominant source of HI asymmetries in isolated galaxies. For CIG 340 the isolation from major companions, symmetric HI spectrum, optical morphology and interaction timescales have allowed us to narrow the possible causes the HI asymmetries and identify tests to further constrain the source of the asymmetries.Comment: 10 page

    Southern GEMS groups II: HI distribution, mass functions and HI deficient galaxies

    Full text link
    We investigate the neutral hydrogen (HI) content of sixteen groups for which we have multi-wavelength data including X-ray observations. Wide-field imaging of the groups was obtained with the 20-cm multibeam system on the 64-m Parkes telescope. We have detected ten previously uncatalogued HI sources, one of which has no visible optical counterpart. We examine the HI properties of the groups, compared to their X-ray characteristics, finding that those groups with a higher X-ray temperature and luminosity contain less HI per galaxy. The HI content of a group depends on its morphological make-up, with those groups dominated by early-type galaxies containing the least total HI. We determined the expected HI for the spiral galaxies in the groups, and found that a number of the galaxies were HI deficient. The HI deficient spirals were found both in groups with and without a hot intra-group medium. The HI deficient galaxies were not necessarily found at the centre of the groups, however, we did find that two thirds of HI deficient galaxies were found within about 1 Mpc from the group centre, indicating that the group environment is affecting the gas-loss from these galaxies. We determined the HI mass function for a composite sample of 15 groups, and found that it is significantly flatter than the field HI mass function. We also find a lack of high HI-mass galaxies in groups. One possible cause of this effect is the tidal stripping of HI gas from spiral galaxies as they are pre-processed in groups.Comment: accepted for publication in MNRAS, 26 pages, 13 Figures, 2 Appendice

    HIghMass - High HI Mass, HI-Rich Galaxies at z∼0z\sim0: Combined HI and H2_2 Observations

    Get PDF
    We present resolved HI and CO observations of three galaxies from the HIghMass sample, a sample of HI-massive (MHI>1010M⊙M_{HI} > 10^{10} M_\odot), gas-rich (MHIM_{HI} in top 5%5\% for their M∗M_*) galaxies identified in the ALFALFA survey. Despite their high gas fractions, these are not low surface brightness galaxies, and have typical specific star formation rates (SFR/M∗/M_*) for their stellar masses. The three galaxies have normal star formation rates for their HI masses, but unusually short star formation efficiency scale lengths, indicating that the star formation bottleneck in these galaxies is in the conversion of HI to H2_2, not in converting H2_2 to stars. In addition, their dark matter spin parameters (λ\lambda) are above average, but not exceptionally high, suggesting that their star formation has been suppressed over cosmic time but are now becoming active, in agreement with prior Hα\alpha observations.Comment: 20 pages, 13 figure
    • …
    corecore