42 research outputs found

    Learning object, grasping and manipulation activities using hierarchical HMMs

    Full text link
    This article presents a probabilistic algorithm for representing and learning complex manipulation activities performed by humans in everyday life. The work builds on the multi-level Hierarchical Hidden Markov Model (HHMM) framework which allows decomposition of longer-term complex manipulation activities into layers of abstraction whereby the building blocks can be represented by simpler action modules called action primitives. This way, human task knowledge can be synthesised in a compact, effective representation suitable, for instance, to be subsequently transferred to a robot for imitation. The main contribution is the use of a robust framework capable of dealing with the uncertainty or incomplete data inherent to these activities, and the ability to represent behaviours at multiple levels of abstraction for enhanced task generalisation. Activity data from 3D video sequencing of human manipulation of different objects handled in everyday life is used for evaluation. A comparison with a mixed generative-discriminative hybrid model HHMM/SVM (support vector machine) is also presented to add rigour in highlighting the benefit of the proposed approach against comparable state of the art techniques. © 2014 Springer Science+Business Media New York

    Efficient duration and hierarchical modeling for human activity recognition

    Get PDF
    A challenge in building pervasive and smart spaces is to learn and recognize human activities of daily living (ADLs). In this paper, we address this problem and argue that in dealing with ADLs, it is beneficial to exploit both their typical duration patterns and inherent hierarchical structures. We exploit efficient duration modeling using the novel Coxian distribution to form the Coxian hidden semi-Markov model (CxHSMM) and apply it to the problem of learning and recognizing ADLs with complex temporal dependencies.The Coxian duration model has several advantages over existing duration parameterization using multinomial or exponential family distributions, including its denseness in the space of non negative distributions, low number of parameters, computational efficiency and the existence of closed-form estimation solutions. Further we combine both hierarchical and duration extensions of the hidden Markov model (HMM) to form the novel switching hidden semi-Markov model (SHSMM), and empirically compare its performance with existing models. The model can learn what an occupant normally does during the day from unsegmented training data and then perform online activity classification, segmentation and abnormality detection. Experimental results show that Coxian modeling outperforms a range of baseline models for the task of activity segmentation. We also achieve arecognition accuracy competitive to the current state-of-the-art multinomial duration model, while gaining a significant reduction in computation. Furthermore, cross-validation model selection on the number of phases K in the Coxian indicates that only a small Kis required to achieve the optimal performance. Finally, our models are further tested in a more challenging setting in which the tracking is often lost and the activities considerably overlap. With a small amount of labels supplied during training in a partially supervised learning mode, our models are again able to deliver reliable performance, again with a small number of phases, making our proposed framework an attractive choice for activity modeling

    Understanding of Object Manipulation Actions Using Human Multi-Modal Sensory Data

    Full text link
    Object manipulation actions represent an important share of the Activities of Daily Living (ADLs). In this work, we study how to enable service robots to use human multi-modal data to understand object manipulation actions, and how they can recognize such actions when humans perform them during human-robot collaboration tasks. The multi-modal data in this study consists of videos, hand motion data, applied forces as represented by the pressure patterns on the hand, and measurements of the bending of the fingers, collected as human subjects performed manipulation actions. We investigate two different approaches. In the first one, we show that multi-modal signal (motion, finger bending and hand pressure) generated by the action can be decomposed into a set of primitives that can be seen as its building blocks. These primitives are used to define 24 multi-modal primitive features. The primitive features can in turn be used as an abstract representation of the multi-modal signal and employed for action recognition. In the latter approach, the visual features are extracted from the data using a pre-trained image classification deep convolutional neural network. The visual features are subsequently used to train the classifier. We also investigate whether adding data from other modalities produces a statistically significant improvement in the classifier performance. We show that both approaches produce a comparable performance. This implies that image-based methods can successfully recognize human actions during human-robot collaboration. On the other hand, in order to provide training data for the robot so it can learn how to perform object manipulation actions, multi-modal data provides a better alternative

    Hand Gesture and Activity Recognition in Assisted Living Through Wearable Sensing and Computing

    Get PDF
    With the growth of the elderly population, more seniors live alone as sole occupants of a private dwelling than any other population groups. Helping them to live a better life is very important and has great societal benefits. Assisted living systems can provide support to elderly people in their houses or apartments. Since automated recognition of human gestures and activities is indispensable for human-robot interaction (HRI) in assisted living systems, this dissertation focuses on developing a theoretical framework for human gesture, daily activity recognition and anomaly detection. First, we introduce two prototypes of wearable sensors for motion data collection used in this project. Second, gesture recognition algorithms are developed to recognize explicit human intention. Third, body activity recognition algorithms are presented with different sensor setups. Fourth, complex daily activities, which consist of body activities and hand gestures simultaneously, are recognized using a dynamic Bayesian network (DBN). Fifth, a coherent anomaly detection framework is built to detect four types of abnormal behaviors in human's daily life. Our work can be extended in several directions in the future.School of Electrical & Computer Engineerin

    Towards gestural understanding for intelligent robots

    Get PDF
    Fritsch JN. Towards gestural understanding for intelligent robots. Bielefeld: Universität Bielefeld; 2012.A strong driving force of scientific progress in the technical sciences is the quest for systems that assist humans in their daily life and make their life easier and more enjoyable. Nowadays smartphones are probably the most typical instances of such systems. Another class of systems that is getting increasing attention are intelligent robots. Instead of offering a smartphone touch screen to select actions, these systems are intended to offer a more natural human-machine interface to their users. Out of the large range of actions performed by humans, gestures performed with the hands play a very important role especially when humans interact with their direct surrounding like, e.g., pointing to an object or manipulating it. Consequently, a robot has to understand such gestures to offer an intuitive interface. Gestural understanding is, therefore, a key capability on the way to intelligent robots. This book deals with vision-based approaches for gestural understanding. Over the past two decades, this has been an intensive field of research which has resulted in a variety of algorithms to analyze human hand motions. Following a categorization of different gesture types and a review of other sensing techniques, the design of vision systems that achieve hand gesture understanding for intelligent robots is analyzed. For each of the individual algorithmic steps – hand detection, hand tracking, and trajectory-based gesture recognition – a separate Chapter introduces common techniques and algorithms and provides example methods. The resulting recognition algorithms are considering gestures in isolation and are often not sufficient for interacting with a robot who can only understand such gestures when incorporating the context like, e.g., what object was pointed at or manipulated. Going beyond a purely trajectory-based gesture recognition by incorporating context is an important prerequisite to achieve gesture understanding and is addressed explicitly in a separate Chapter of this book. Two types of context, user-provided context and situational context, are reviewed and existing approaches to incorporate context for gestural understanding are reviewed. Example approaches for both context types provide a deeper algorithmic insight into this field of research. An overview of recent robots capable of gesture recognition and understanding summarizes the currently realized human-robot interaction quality. The approaches for gesture understanding covered in this book are manually designed while humans learn to recognize gestures automatically during growing up. Promising research targeted at analyzing developmental learning in children in order to mimic this capability in technical systems is highlighted in the last Chapter completing this book as this research direction may be highly influential for creating future gesture understanding systems

    Discriminative Dictionary Learning with Motion Weber Local Descriptor for Violence Detection

    Full text link
    © 1991-2012 IEEE. Automatic violence detection from video is a hot topic for many video surveillance applications. However, there has been little success in developing an algorithm that can detect violence in surveillance videos with high performance. In this paper, following our recently proposed idea of motion Weber local descriptor (WLD), we make two major improvements and propose a more effective and efficient algorithm for detecting violence from motion images. First, we propose an improved WLD (IWLD) to better depict low-level image appearance information, and then extend the spatial descriptor IWLD by adding a temporal component to capture local motion information and hence form the motion IWLD. Second, we propose a modified sparse-representation-based classification model to both control the reconstruction error of coding coefficients and minimize the classification error. Based on the proposed sparse model, a class-specific dictionary containing dictionary atoms corresponding to the class labels is learned using class labels of training samples. With this learned dictionary, not only the representation residual but also the representation coefficients become discriminative. A classification scheme integrating the modified sparse model is developed to exploit such discriminative information. The experimental results on three benchmark data sets have demonstrated the superior performance of the proposed approach over the state of the arts
    corecore