1,771 research outputs found

    Measurement of sea waves

    Get PDF
    Sea waves constitute a natural phenomenon with a great impact on human activities, and their monitoring is essential for meteorology, coastal safety, navigation, and renewable energy from the sea. Therefore, the main measurement techniques for their monitoring are here reviewed, including buoys, satellite observation, coastal radars, shipboard observation, and microseism analysis. For each technique, the measurement principle is briefly recalled, the degree of development is outlined, and trends are prospected. The complementarity of such techniques is also highlighted, and the need for further integration in local and global networks is stressed

    Measurement of Sea Waves

    Get PDF
    Sea waves constitute a natural phenomenon with a great impact on human activities, and their monitoring is essential for meteorology, coastal safety, navigation, and renewable energy from the sea. Therefore, the main measurement techniques for their monitoring are here reviewed, including buoys, satellite observation, coastal radars, shipboard observation, and microseism analysis. For each technique, the measurement principle is briefly recalled, the degree of development is outlined, and trends are prospected. The complementarity of such techniques is also highlighted, and the need for further integration in local and global networks is stressed

    HF Radar Network Design for Remote Sensing of the South China Sea

    Get PDF

    Wind direction data from a coastal HF radar system in the gulf of naples (central mediterranean sea)

    Get PDF
    Results on the accuracy of SeaSonde High Frequency (HF) radar wind direction measurements in the Gulf of Naples (Southern Tyrrhenian Sea, Central Mediterranean Sea) are here presented. The investigation was carried out for a winter period (2 February-6 March) and for one summer month (August) of the reference year 2009. HF radar measurements were compared with in situ recordings from a weather station and with model data, with the aim of resolving both small scale and large scale dynamics. The analysis of the overall performance of the HF radar system in the Gulf of Naples shows that the data are reliable when the wind speed exceeds a 5 m/s threshold. Despite such a limitation, this study confirms the potentialities of these systems as monitoring platforms in coastal areas and suggests further efforts towards their improvement

    Remote Sensing with Shipborne High-Frequency Surface-Wave Radar

    Get PDF
    High-frequency surface-wave radar (HFSWR) has been successfully applied for moving target detection and remote sensing of ocean surface dynamic parameters for decades. Compared with conventional instruments such as buoys, anemometers, and microwave radars, HFSWR can be employed to an all-weather and all-time surveillance far beyond the visible horizon. Moreover, based on agility and maneuverability, shipborne HFSWR can not only enhance the survivability in complex ocean environment but also enlarge the detection distance on open sea, which will gradually become a popular deployment situation. In this chapter, ocean surface cross sections for shipborne HFSWR with linear platform motion and sway motion are derived theoretically. Then, the methods for ocean surface wind direction, wind field, and current extraction are presented. The computer simulations and experimental results of the real data are given to verify the detection accuracy and the distance limit of the abovementioned methods

    Some considerations about coastal ocean observing systems

    Get PDF
    Author Posting. © The Authors, 2017. This article is posted here by permission of Sears Foundation for Marine Research for personal use, not for redistribution. The definitive version was published in Journal of Marine Research 75 (2017): 161-188, doi:10.1357/002224017821836743.Coastal ocean observing capabilities are evolving rapidly, both in terms of sensors and in terms of the volume of information available. We discuss the aspects of the coastal ocean that make it a unique environment, both in terms of physical processes and measurement techniques. Although many global-level systems are relevant to the coastal ocean, we concentrate on treating systems that are unique to the continental shelf environment. Further, we briefly discuss examples of measurement systems that would be useful for developing and driving ocean prediction systems.KB gratefully acknowledges support from the U.S. National Science Foundation, Physical Oceanography (grant OCE-1433953) and Ocean Biology (grant OCE-1258667) programs. AK gratefully acknowledges support from the U.S. National Science Foundation, Physical Oceanography (grant OCE-1332646)

    Summary of Research 1998, Department of Oceangraphy

    Get PDF
    The views expressed in this report are those of the authors and do not reflect the official policy or position of the Department of Defense or the U.S. Government.This report contains summaries of research projects in the Department of Oceanography. A list of recent publications is also included which consists of conference presentations and publications, books, contributions to books, published journal papers, technical reports, and thesis abstracts

    Remote Sensing of the Oceans

    Get PDF
    This book covers different topics in the framework of remote sensing of the oceans. Latest research advancements and brand-new studies are presented that address the exploitation of remote sensing instruments and simulation tools to improve the understanding of ocean processes and enable cutting-edge applications with the aim of preserving the ocean environment and supporting the blue economy. Hence, this book provides a reference framework for state-of-the-art remote sensing methods that deal with the generation of added-value products and the geophysical information retrieval in related fields, including: Oil spill detection and discrimination; Analysis of tropical cyclones and sea echoes; Shoreline and aquaculture area extraction; Monitoring coastal marine litter and moving vessels; Processing of SAR, HF radar and UAV measurements

    Wind-wave characterization in a wind-jet region: the Ebro delta case

    Get PDF
    This manuscript describes the wind-wave generation, development and fading in a complex area: a wind-jet region. The study region is the offshore Ebro Delta (NW Mediterranean Sea) where strong cross-shelf winds occur due to a topographic channelization. This leads to relatively short-fetch conditions, which interact with the swell component. The third-generation wave model SimulatingWAves Nearshore (SWAN) is implemented and fed by high-resolution wind fields. A combination of buoy and High Frequency (HF) radar data is used for model validation, resulting in a reasonable level of agreement. The numerical results characterize the wind-wave evolution during a wind jet. A bimodal spectrum is observed due to the interaction of swell and sea systems. The wave directional spreading exhibits lower values at the wind-jet axis. Finally, a reliability analysis of the wave data from an HF radar deployed at the region is carried out.Peer ReviewedPostprint (published version

    Surface circulation in Block Island Sound and adjacent coastal and shelf regions : a FVCOM-CODAR comparison

    Get PDF
    © The Author(s), 2016. This is the author's version of the work and is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Progress in Oceanography 143 (2016): 26-45, doi:10.1016/j.pocean.2016.02.005.CODAR-derived surface currents in Block Island Sound over the period of June 2000 through September 2008 were compared to currents computed using the Northeast Coastal Ocean Forecast System (NECOFS). The measurement uncertainty of CODAR-derived currents, estimated using statistics of a screened nine-year time series of hourly-averaged flow field, ranged from 3-7 cm/s in speed and 4°-14° in direction. The CODAR-derived and model-computed kinetic energy spectrum densities were in good agreement at subtidal frequencies, but the NECOFS-derived currents were larger by about 28% at semi-diurnal and diurnal tidal frequencies. The short-term (hourly to daily) current variability was dominated by the semidiurnal tides (predominantly the M2 tide), which on average accounted for ~87% of the total kinetic energy. The diurnal tidal and subtidal variability accounted for ~4% and ~9% of the total kinetic energy, respectively. The monthly-averaged difference between the CODAR-derived and model-computed velocities over the study area was 6 cm/s or less in speed and 28° or less in direction over the study period. An EOF analysis for the low-frequency vertically-averaged model current field showed that the water transport in the Block Island Sound region was dominated by modes 1 and 2, which accounted for 89% and 7% of the total variance, respectively. Mode 1 represented a relatively stationary spatial and temporal flow pattern with a magnitude that varied with season. Mode 2 was characterized mainly by a secondary cross-shelf flow and a relatively strong along-shelf flow. Process-oriented model experiments indicated that the relatively stationary flow pattern found in mode 1 was a result of tidal rectification and its magnitude changed with seasonal stratification. Correlation analysis between the flow and wind stress suggested that the cross-shelf water transport and its temporal variability in mode 2 were highly correlated to the surface wind forcing. The mode 2 derived onshore and offshore water transport, and was consistent with wind-driven Ekman theory. The along-shelf water transport over the outer shelf, where a large portion of the water flowed from upstream Nantucket Shoals, was not highly correlated to the surface wind stress.This work was supported by the NSF grants OCE-1332207 and OCE-1332666, MIT Sea Grant College Program through grant 2012-R/RC-127, and the NOAA NERACOOS program funds for NECOFS. Operational funding for the CODAR systems used in this study was provided by the Mid-Atlantic Regional Association Coastal Ocean Observing System. The development of the Global-FVCOM system has been supported by NSF grants OCE-1203393. C. Chen’s contribution was also supported by the International Center for Marine Studies at Shanghai Ocean University through the “Shanghai Universities First-class Disciplines Project”.2017-03-0
    corecore