237 research outputs found

    Deep CNN for IIF Images Classification in Autoimmune Diagnostics

    Get PDF
    The diagnosis and monitoring of autoimmune diseases are very important problem in medicine. The most used test for this purpose is the antinuclear antibody (ANA) test. An indirect immunofluorescence (IIF) test performed by Human Epithelial type 2 (HEp-2) cells as substrate antigen is the most common methods to determine ANA. In this paper we present an automatic HEp-2 specimen system based on a convolutional neural network method able to classify IIF images. The system consists of a module for features extraction based on a pre-trained AlexNet network and a classification phase for the cell-pattern association using six support vector machines and a k-nearest neighbors classifier. The classification at the image-level was obtained by analyzing the pattern prevalence at cell-level. The layers of the pre-trained network and various system parameters were evaluated in order to optimize the process. This system has been developed and tested on the HEp-2 images indirect immunofluorescence images analysis (I3A) public database. To test the generalisation performance of the method, the leave-one-specimen-out procedure was used in this work. The performance analysis showed an accuracy of 96.4% and a mean class accuracy equal to 93.8%. The results have been evaluated comparing them with some of the most representative works using the same database

    APPLICATION OF DEEP CONVOLUTIONAL NETWORK FOR THE CLASSIFICATION OF AUTO IMMUNE DISEASE

    Get PDF
    Abstract—Indirect Immuno Fluorescence (IIF) detection analysis technique is in limelight because of its great importance in the field of medical health. It is mainly used for the analysis of auto-immune diseases. These diseases are caused when body’s natural defense system can’t distinguish between normal body cells and foreign cells. More than 80 auto-immune diseases exist in humans which affect different parts of body. IIF works both manually as well as by using Computer-Aided Diagnosis (CAD). The aim of research is to propose an advanced methodology for the analysis of auto-immune diseases by using well-known model of transfer learning for the analysis of autoimmune diseases. Data augmentation and data normalization is also used to resolve the problem of over fitting in data. Firstly, freely available MIVIA data set of HEP- type 2 cells has been selected, which contains total of 1457 images and six different classes of staining patterns named as centromere, homogeneous, nucleolar, coarse speckled, fine speckled and cytoplasmatic. Then well-known model of transfer learning VGG-16 are train on MIVIA data set of HEP-type 2 cells. Data augmentation and data normalization used on pre-trained data to avoid over fitting because datasets of medical images are not very large. After the application of data augmentation and data normalization on pre-trained model, the performance of model is used to calculate by using a confusion matrix of VGG-16. VGG-16 achieves 84.375% accuracy. It is more suitable for the analysis of auto-immune diseases. Same as accuracy, we also use the other three parameters, Precision, F1 measures, and recall to check the performance of model. All four parameters use confusion matrix to find performance of model. The tools and languages also have great importance because it gives a simple and easy way of implementation to solve problems in image processing. For this purpose, python and colab is used to read and write the data because python provides fast execution of data and colab work as a simulator of python. The result shows that transfer learning is the most sufficient and enhanced technique for the analysis of auto-immune diseases since it provides high accuracy in less time and reduces the errors in image classification
    • …
    corecore