63 research outputs found

    High-Level Synthesis Based VLSI Architectures for Video Coding

    Get PDF
    High Efficiency Video Coding (HEVC) is state-of-the-art video coding standard. Emerging applications like free-viewpoint video, 360degree video, augmented reality, 3D movies etc. require standardized extensions of HEVC. The standardized extensions of HEVC include HEVC Scalable Video Coding (SHVC), HEVC Multiview Video Coding (MV-HEVC), MV-HEVC+ Depth (3D-HEVC) and HEVC Screen Content Coding. 3D-HEVC is used for applications like view synthesis generation, free-viewpoint video. Coding and transmission of depth maps in 3D-HEVC is used for the virtual view synthesis by the algorithms like Depth Image Based Rendering (DIBR). As first step, we performed the profiling of the 3D-HEVC standard. Computational intensive parts of the standard are identified for the efficient hardware implementation. One of the computational intensive part of the 3D-HEVC, HEVC and H.264/AVC is the Interpolation Filtering used for Fractional Motion Estimation (FME). The hardware implementation of the interpolation filtering is carried out using High-Level Synthesis (HLS) tools. Xilinx Vivado Design Suite is used for the HLS implementation of the interpolation filters of HEVC and H.264/AVC. The complexity of the digital systems is greatly increased. High-Level Synthesis is the methodology which offers great benefits such as late architectural or functional changes without time consuming in rewriting of RTL-code, algorithms can be tested and evaluated early in the design cycle and development of accurate models against which the final hardware can be verified

    IMPLEMENTASI HEVC CODEC PADA PLATFORM BERBASIS FPGA

    Get PDF
    High Efficiency Video Coding (HEVC) telah di desain sebagai standar baru untuk beberapa aplikasi video dan memiliki peningkatan performa dibanding dengan standar sebelumnya. Meskipun HEVC mencapai efisiensi coding yang tinggi, namun HEVC memiliki kekurangan pada beban pemrosesan tinggi dan loading yang berat ketika melakukan proses encoding video. Untuk meningkatkan performa encoder, kami bertujuan untuk mengimplementasikan HEVC codec pada Zynq 7000 AP SoC. Kami mencoba mengimplementasikan HEVC menggunakan tiga desain sistem. Pertama, HEVC codec di implementasikan pada Zynq PS. Kedua, encoder HEVC di implementasikan dengan hardware/software co-design. Ketiga, mengimplementasikan sebagian dari encoder HEVC pada Zynq PL. Pada implementasi kami menggunakan Xilinx Vivado HLS untuk mengembangkan codec. Hasil menunjukkan bahwa HEVC codec dapat di implementasikan pada Zynq PS. Codec dapat mengurangi ukuran video dibanding ukuran asli video pada format H.264. Kualitas video hampir sama dengan format H.264. Sayangnya, kami tidak dapat menyelesaikan desain dengan hardware/software co-design karena kompleksitas coding untuk validasi kode C pada Vivado HLS. Hasil lain, sebagian dari encoder HEVC dapat di implementasikan pada Zynq PL, yaitu HEVC 2D IDCT. Dari implementasi kami dapat mengoptimalkan fungsi loop pada HEVC 2D dan 1D IDCT menggunakan pipelining. Perbandingan hasil antara pipelining inner-loop dan outer-loop menunjukkan bahwa pipelining di outer-loop dapat meningkatkan performa dilihat dari nilai latency

    Algorithms for compression of high dynamic range images and video

    Get PDF
    The recent advances in sensor and display technologies have brought upon the High Dynamic Range (HDR) imaging capability. The modern multiple exposure HDR sensors can achieve the dynamic range of 100-120 dB and LED and OLED display devices have contrast ratios of 10^5:1 to 10^6:1. Despite the above advances in technology the image/video compression algorithms and associated hardware are yet based on Standard Dynamic Range (SDR) technology, i.e. they operate within an effective dynamic range of up to 70 dB for 8 bit gamma corrected images. Further the existing infrastructure for content distribution is also designed for SDR, which creates interoperability problems with true HDR capture and display equipment. The current solutions for the above problem include tone mapping the HDR content to fit SDR. However this approach leads to image quality associated problems, when strong dynamic range compression is applied. Even though some HDR-only solutions have been proposed in literature, they are not interoperable with current SDR infrastructure and are thus typically used in closed systems. Given the above observations a research gap was identified in the need for efficient algorithms for the compression of still images and video, which are capable of storing full dynamic range and colour gamut of HDR images and at the same time backward compatible with existing SDR infrastructure. To improve the usability of SDR content it is vital that any such algorithms should accommodate different tone mapping operators, including those that are spatially non-uniform. In the course of the research presented in this thesis a novel two layer CODEC architecture is introduced for both HDR image and video coding. Further a universal and computationally efficient approximation of the tone mapping operator is developed and presented. It is shown that the use of perceptually uniform colourspaces for internal representation of pixel data enables improved compression efficiency of the algorithms. Further proposed novel approaches to the compression of metadata for the tone mapping operator is shown to improve compression performance for low bitrate video content. Multiple compression algorithms are designed, implemented and compared and quality-complexity trade-offs are identified. Finally practical aspects of implementing the developed algorithms are explored by automating the design space exploration flow and integrating the high level systems design framework with domain specific tools for synthesis and simulation of multiprocessor systems. The directions for further work are also presented

    Error resilience and concealment techniques for high-efficiency video coding

    Get PDF
    This thesis investigates the problem of robust coding and error concealment in High Efficiency Video Coding (HEVC). After a review of the current state of the art, a simulation study about error robustness, revealed that the HEVC has weak protection against network losses with significant impact on video quality degradation. Based on this evidence, the first contribution of this work is a new method to reduce the temporal dependencies between motion vectors, by improving the decoded video quality without compromising the compression efficiency. The second contribution of this thesis is a two-stage approach for reducing the mismatch of temporal predictions in case of video streams received with errors or lost data. At the encoding stage, the reference pictures are dynamically distributed based on a constrained Lagrangian rate-distortion optimization to reduce the number of predictions from a single reference. At the streaming stage, a prioritization algorithm, based on spatial dependencies, selects a reduced set of motion vectors to be transmitted, as side information, to reduce mismatched motion predictions at the decoder. The problem of error concealment-aware video coding is also investigated to enhance the overall error robustness. A new approach based on scalable coding and optimally error concealment selection is proposed, where the optimal error concealment modes are found by simulating transmission losses, followed by a saliency-weighted optimisation. Moreover, recovery residual information is encoded using a rate-controlled enhancement layer. Both are transmitted to the decoder to be used in case of data loss. Finally, an adaptive error resilience scheme is proposed to dynamically predict the video stream that achieves the highest decoded quality for a particular loss case. A neural network selects among the various video streams, encoded with different levels of compression efficiency and error protection, based on information from the video signal, the coded stream and the transmission network. Overall, the new robust video coding methods investigated in this thesis yield consistent quality gains in comparison with other existing methods and also the ones implemented in the HEVC reference software. Furthermore, the trade-off between coding efficiency and error robustness is also better in the proposed methods

    An evaluation of current SIMD programming models for C++

    Get PDF
    SIMD extensions were added to microprocessors in the mid '90s to speed-up data-parallel code by vectorization. Unfortunately, the SIMD programming model has barely evolved and the most efficient utilization is still obtained with elaborate intrinsics coding. As a consequence, several approaches to write efficient and portable SIMD code have been proposed. In this work, we evaluate current programming models for the C++ language, which claim to simplify SIMD programming while maintaining high performance. The proposals were assessed by implementing two kernels: one standard floating-point benchmark and one real-world integer-based application, both highly data parallel. Results show that the proposed solutions perform well for the floating point kernel, achieving close to the maximum possible speed-up. For the real-world application, the programming models exhibit significant performance gaps due to data type issues, missing template support and other problems discussed in this paper

    Challenges and solutions in H.265/HEVC for integrating consumer electronics in professional video systems

    Get PDF

    Towards visualization and searching :a dual-purpose video coding approach

    Get PDF
    In modern video applications, the role of the decoded video is much more than filling a screen for visualization. To offer powerful video-enabled applications, it is increasingly critical not only to visualize the decoded video but also to provide efficient searching capabilities for similar content. Video surveillance and personal communication applications are critical examples of these dual visualization and searching requirements. However, current video coding solutions are strongly biased towards the visualization needs. In this context, the goal of this work is to propose a dual-purpose video coding solution targeting both visualization and searching needs by adopting a hybrid coding framework where the usual pixel-based coding approach is combined with a novel feature-based coding approach. In this novel dual-purpose video coding solution, some frames are coded using a set of keypoint matches, which not only allow decoding for visualization, but also provide the decoder valuable feature-related information, extracted at the encoder from the original frames, instrumental for efficient searching. The proposed solution is based on a flexible joint Lagrangian optimization framework where pixel-based and feature-based processing are combined to find the most appropriate trade-off between the visualization and searching performances. Extensive experimental results for the assessment of the proposed dual-purpose video coding solution under meaningful test conditions are presented. The results show the flexibility of the proposed coding solution to achieve different optimization trade-offs, notably competitive performance regarding the state-of-the-art HEVC standard both in terms of visualization and searching performance.Em modernas aplicações de vídeo, o papel do vídeo decodificado é muito mais que simplesmente preencher uma tela para visualização. Para oferecer aplicações mais poderosas por meio de sinais de vídeo,é cada vez mais crítico não apenas considerar a qualidade do conteúdo objetivando sua visualização, mas também possibilitar meios de realizar busca por conteúdos semelhantes. Requisitos de visualização e de busca são considerados, por exemplo, em modernas aplicações de vídeo vigilância e comunicações pessoais. No entanto, as atuais soluções de codificação de vídeo são fortemente voltadas aos requisitos de visualização. Nesse contexto, o objetivo deste trabalho é propor uma solução de codificação de vídeo de propósito duplo, objetivando tanto requisitos de visualização quanto de busca. Para isso, é proposto um arcabouço de codificação em que a abordagem usual de codificação de pixels é combinada com uma nova abordagem de codificação baseada em features visuais. Nessa solução, alguns quadros são codificados usando um conjunto de pares de keypoints casados, possibilitando não apenas visualização, mas também provendo ao decodificador valiosas informações de features visuais, extraídas no codificador a partir do conteúdo original, que são instrumentais em aplicações de busca. A solução proposta emprega um esquema flexível de otimização Lagrangiana onde o processamento baseado em pixel é combinado com o processamento baseado em features visuais objetivando encontrar um compromisso adequado entre os desempenhos de visualização e de busca. Os resultados experimentais mostram a flexibilidade da solução proposta em alcançar diferentes compromissos de otimização, nomeadamente desempenho competitivo em relação ao padrão HEVC tanto em termos de visualização quanto de busca

    Dense light field coding: a survey

    Get PDF
    Light Field (LF) imaging is a promising solution for providing more immersive and closer to reality multimedia experiences to end-users with unprecedented creative freedom and flexibility for applications in different areas, such as virtual and augmented reality. Due to the recent technological advances in optics, sensor manufacturing and available transmission bandwidth, as well as the investment of many tech giants in this area, it is expected that soon many LF transmission systems will be available to both consumers and professionals. Recognizing this, novel standardization initiatives have recently emerged in both the Joint Photographic Experts Group (JPEG) and the Moving Picture Experts Group (MPEG), triggering the discussion on the deployment of LF coding solutions to efficiently handle the massive amount of data involved in such systems. Since then, the topic of LF content coding has become a booming research area, attracting the attention of many researchers worldwide. In this context, this paper provides a comprehensive survey of the most relevant LF coding solutions proposed in the literature, focusing on angularly dense LFs. Special attention is placed on a thorough description of the different LF coding methods and on the main concepts related to this relevant area. Moreover, comprehensive insights are presented into open research challenges and future research directions for LF coding.info:eu-repo/semantics/publishedVersio

    Learned-based Intra Coding Tools for Video Compression.

    Get PDF
    PhD Theses.The increase in demand for video rendering in 4K and beyond displays, as well as immersive video formats, requires the use of e cient compression techniques. In this thesis novel methods for enhancing the e ciency of current and next generation video codecs are investigated. Several aspects that in uence the way conventional video coding methods work are considered. The methods proposed in this thesis utilise Neural Networks (NNs) trained for regression tasks in order to predict data. In particular, Convolutional Neural Networks (CNNs) are used to predict Rate-Distortion (RD) data for intra-coded frames. Moreover, a novel intra-prediction methods are proposed with the aim of providing new ways to exploit redundancies overlooked by traditional intraprediction tools. Additionally, it is shown how such methods can be simpli ed in order to derive less resource-demanding tools
    corecore