31,057 research outputs found

    Platelets and galectins

    Get PDF
    A major function of platelets is keeping the vascular system intact. Platelet activation at sites of vascular injury leads to the formation of a hemostatic plug. Activation of platelets is therefore crucial for normal hemostasis; however, uncontrolled platelet activation may also lead to the formation of occlusive thrombi that can cause ischemic events. Although they are essential for proper hemostasis, platelet function extends to physiologic processes such as tissue repair, wound remodeling and antimicrobial host defense, or pathologic conditions such as thrombosis, atherosclerosis, chronic inflammatory diseases and cancer. Platelets can be activated by soluble molecules including thrombin, thromboxane A2 (TXA2), adenosine diphosphate (ADP), serotonin or by adhesive extracellular matrix (ECM) proteins such as von Willebrand factor (vWF) and collagen. Here we describe recent advances in the activation of platelets by non-canonical platelet agonists such as galectins. By acting either in soluble or immobilized form, these glycan-binding proteins trigger all platelet activation responses through modulation of discrete signaling pathways. We also offer new hypotheses and some speculations about the role of platelet-galectin interactions not only in hemostasis and thrombosis but also in inflammation and related diseases such as atherosclerosis and cancer.Fil: Schattner, Mirta Ana. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    A task and performance analysis of endoscopic submucosal dissection (ESD) surgery

    Get PDF
    BACKGROUND: ESD is an endoscopic technique for en bloc resection of gastrointestinal lesions. ESD is a widely-used in Japan and throughout Asia, but not as prevalent in Europe or the US. The procedure is technically challenging and has higher adverse events (bleeding, perforation) compared to endoscopic mucosal resection. Inadequate training platforms and lack of established training curricula have restricted its wide acceptance in the US. Thus, we aim to develop a Virtual Endoluminal Surgery Simulator (VESS) for objective ESD training and assessment. In this work, we performed task and performance analysis of ESD surgeries. METHODS: We performed a detailed colorectal ESD task analysis and identified the critical ESD steps for lesion identification, marking, injection, circumferential cutting, dissection, intraprocedural complication management, and post-procedure examination. We constructed a hierarchical task tree that elaborates the order of tasks in these steps. Furthermore, we developed quantitative ESD performance metrics. We measured task times and scores of 16 ESD surgeries performed by four different endoscopic surgeons. RESULTS: The average time of the marking, injection, and circumferential cutting phases are 203.4 (σ: 205.46), 83.5 (σ: 49.92), 908.4 s. (σ: 584.53), respectively. Cutting the submucosal layer takes most of the time of overall ESD procedure time with an average of 1394.7 s (σ: 908.43). We also performed correlation analysis (Pearson's test) among the performance scores of the tasks. There is a moderate positive correlation (R = 0.528, p = 0.0355) between marking scores and total scores, a strong positive correlation (R = 0.7879, p = 0.0003) between circumferential cutting and submucosal dissection and total scores. Similarly, we noted a strong positive correlation (R = 0.7095, p = 0.0021) between circumferential cutting and submucosal dissection and marking scores. CONCLUSIONS: We elaborated ESD tasks and developed quantitative performance metrics used in analysis of actual surgery performance. These ESD metrics will be used in future validation studies of our VESS simulator
    • …
    corecore