7 research outputs found

    Scene-based imperceptible-visible watermarking for HDR video content

    Get PDF
    This paper presents the High Dynamic Range - Imperceptible Visible Watermarking for HDR video content (HDR-IVW-V) based on scene detection for robust copyright protection of HDR videos using a visually imperceptible watermarking methodology. HDR-IVW-V employs scene detection to reduce both computational complexity and undesired visual attention to watermarked regions. Visual imperceptibility is achieved by finding the region of a frame with the highest hiding capacities on which the Human Visual System (HVS) cannot recognize the embedded watermark. The embedded watermark remains visually imperceptible as long as the normal color calibration parameters are held. HDR-IVW-V is evaluated on PQ-encoded HDR video content successfully attaining visual imperceptibility, robustness to tone mapping operations and image quality preservation

    Watermarking of HDR images in the spatial domain with HVS-imperceptibility

    Get PDF
    This paper presents a watermarking method in the spatial domain with HVS-imperceptibility for High Dynamic Range (HDR) images. The proposed method combines the content readability afforded by invisible watermarking with the visual ownership identification afforded by visible watermarking. The HVS-imperceptibility is guaranteed thanks to a Luma Variation Tolerance (LVT) curve, which is associated with the transfer function (TF) used for HDR encoding and provides the information needed to embed an imperceptible watermark in the spatial domain. The LVT curve is based on the inaccuracies between the non-linear digital representation of the linear luminance acquired by an HDR sensor and the brightness perceived by the Human Visual System (HVS) from the linear luminance displayed on an HDR screen. The embedded watermarks remain imperceptible to the HVS as long as the TF is not altered or the normal calibration and colorimetry conditions of the HDR screen remain unchanged. Extensive qualitative and quantitative evaluations on several HDR images encoded by two widely-used TFs confirm the strong HVSimperceptibility capabilities of the method, as well as the robustness of the embedded watermarks to tone mapping, lossy compression, and common signal processing operations

    High-capacity watermarking of high dynamic range images

    Get PDF
    High dynamic range (HDR) imaging techniques address the need to capture the full range of color and light that the human eyes can perceive in the real world. HDR technology is becoming more and more pervasive. In fact, most of the cameras and smartphones available on the market are capable of capturing HDR images. Among the challenges posed by the spread of this new technology there is the increasing need to design proper techniques to protect the intellectual property of HDR digital media. In this paper, we speculate about the use of watermarking techniques to cope with the peculiarities of HDR media to prevent the misappropriation of HDR images

    HDR Image Watermarking

    Get PDF
    In this Chapter we survey available solutions for HDR image watermarking. First, we briefly discuss watermarking in general terms, with particular emphasis on its requirements that primarily include security, robustness, imperceptibility, capacity and the availability of the original image during recovery. However, with respect to traditional image watermarking, HDR images possess a unique set of features such as an extended range of luminance values to work with and tone-mapping operators against whom it is essential to be robust. These clearly affect the HDR watermarking algorithms proposed in the literature, which we extensively review next, including a thorough analysis of the reported experimental results. As a working example, we also describe the HDR watermarking system that we recently proposed and that focuses on combining imperceptibility, security and robustness to TM operators at the expense of capacity. We conclude the chapter with a critical analysis of the current state and future directions of the watermarking applications in the HDR domain

    Compression, Modeling, and Real-Time Rendering of Realistic Materials and Objects

    Get PDF
    The realism of a scene basically depends on the quality of the geometry, the illumination and the materials that are used. Whereas many sources for the creation of three-dimensional geometry exist and numerous algorithms for the approximation of global illumination were presented, the acquisition and rendering of realistic materials remains a challenging problem. Realistic materials are very important in computer graphics, because they describe the reflectance properties of surfaces, which are based on the interaction of light and matter. In the real world, an enormous diversity of materials can be found, comprising very different properties. One important objective in computer graphics is to understand these processes, to formalize them and to finally simulate them. For this purpose various analytical models do already exist, but their parameterization remains difficult as the number of parameters is usually very high. Also, they fail for very complex materials that occur in the real world. Measured materials, on the other hand, are prone to long acquisition time and to huge input data size. Although very efficient statistical compression algorithms were presented, most of them do not allow for editability, such as altering the diffuse color or mesostructure. In this thesis, a material representation is introduced that makes it possible to edit these features. This makes it possible to re-use the acquisition results in order to easily and quickly create deviations of the original material. These deviations may be subtle, but also substantial, allowing for a wide spectrum of material appearances. The approach presented in this thesis is not based on compression, but on a decomposition of the surface into several materials with different reflection properties. Based on a microfacette model, the light-matter interaction is represented by a function that can be stored in an ordinary two-dimensional texture. Additionally, depth information, local rotations, and the diffuse color are stored in these textures. As a result of the decomposition, some of the original information is inevitably lost, therefore an algorithm for the efficient simulation of subsurface scattering is presented as well. Another contribution of this work is a novel perception-based simplification metric that includes the material of an object. This metric comprises features of the human visual system, for example trichromatic color perception or reduced resolution. The proposed metric allows for a more aggressive simplification in regions where geometric metrics do not simplif

    Temporal Image Forensics for Picture Dating based on Machine Learning

    Get PDF
    Temporal image forensics involves the investigation of multi-media digital forensic material related to crime with the goal of obtaining accurate evidence concerning activity and timing to be presented in a court of law. Because of the ever-increasing complexity of crime in the digital age, forensic investigations are increasingly dependent on timing information. The simplest way to extract such forensic information would be the use of the EXIF header of picture files as it contains most of the information. However, these header data can be easily removed or manipulated and hence cannot be evidential, and so estimating the acquisition time of digital photographs has become more challenging. This PhD research proposes to use image contents instead of file headers to solve this problem. In this thesis, a number of contributions are presented in the area of temporal image forensics to predict picture dating. Firstly, the present research introduces the unique Northumbria Temporal Image Forensics (NTIF) database of pictures for the purpose of temporal image forensic purposes. As digital sensors age, the changes in Photo Response Non-Uniformity (PRNU) over time have been highlighted using the NTIF database, and it is concluded that PRNU cannot be useful feature for picture dating application. Apart from the PRNU, defective pixels also constitute another sensor imperfection of forensic relevance. Secondly, this thesis highlights the fact that the filter-based PRNU technique is useful for source camera identification application as compared to deep convolutional neural networks when limited amounts of images under investigation are available to the forensic analyst. The results concluded that due to sensor pattern noise feature which is location-sensitive, the performance of CNN-based approach declines because sensor pattern noise image blocks are fed at different locations into CNN for the same category. Thirdly, the deep learning technique is applied for picture dating, which has shown promising results with performance levels up to 80% to 88% depending on the digital camera used. The key findings indicate that a deep learning approach can successfully learn the temporal changes in image contents, rather than the sensor pattern noise. Finally, this thesis proposes a technique to estimate the acquisition time slots of digital pictures using a set of candidate defective pixel locations in non-overlapping image blocks. The temporal behaviour of camera sensor defects in digital pictures are analyzed using a machine learning technique in which potential candidate defective pixels are determined according to the related pixel neighbourhood and two proposed features called local variation features. The idea of virtual timescales using halves of real time slots and a combination of prediction scores for image blocks has been proposed to enhance performance. When assessed using the NTIF image dataset, the proposed system has been shown to achieve very promising results with an estimated accuracy of the acquisition times of digital pictures between 88% and 93%, exhibiting clear superiority over relevant state-of-the-art systems

    HDR Image Watermarking based on Bracketing Decomposition

    No full text
    corecore