33,083 research outputs found

    On the ADI method for the Sylvester Equation and the optimal-H2\mathcal{H}_2 points

    Full text link
    The ADI iteration is closely related to the rational Krylov projection methods for constructing low rank approximations to the solution of Sylvester equation. In this paper we show that the ADI and rational Krylov approximations are in fact equivalent when a special choice of shifts are employed in both methods. We will call these shifts pseudo H2-optimal shifts. These shifts are also optimal in the sense that for the Lyapunov equation, they yield a residual which is orthogonal to the rational Krylov projection subspace. Via several examples, we show that the pseudo H2-optimal shifts consistently yield nearly optimal low rank approximations to the solutions of the Lyapunov equations

    Interpolatory methods for H\mathcal{H}_\infty model reduction of multi-input/multi-output systems

    Full text link
    We develop here a computationally effective approach for producing high-quality H\mathcal{H}_\infty-approximations to large scale linear dynamical systems having multiple inputs and multiple outputs (MIMO). We extend an approach for H\mathcal{H}_\infty model reduction introduced by Flagg, Beattie, and Gugercin for the single-input/single-output (SISO) setting, which combined ideas originating in interpolatory H2\mathcal{H}_2-optimal model reduction with complex Chebyshev approximation. Retaining this framework, our approach to the MIMO problem has its principal computational cost dominated by (sparse) linear solves, and so it can remain an effective strategy in many large-scale settings. We are able to avoid computationally demanding H\mathcal{H}_\infty norm calculations that are normally required to monitor progress within each optimization cycle through the use of "data-driven" rational approximations that are built upon previously computed function samples. Numerical examples are included that illustrate our approach. We produce high fidelity reduced models having consistently better H\mathcal{H}_\infty performance than models produced via balanced truncation; these models often are as good as (and occasionally better than) models produced using optimal Hankel norm approximation as well. In all cases considered, the method described here produces reduced models at far lower cost than is possible with either balanced truncation or optimal Hankel norm approximation

    Inexact Solves in Interpolatory Model Reduction

    Get PDF
    We investigate the use of inexact solves for interpolatory model reduction and consider associated perturbation effects on the underlying model reduction problem. We give bounds on system perturbations induced by inexact solves and relate this to termination criteria for iterative solution methods. We show that when a Petrov-Galerkin framework is employed for the inexact solves, the associated reduced order model is an exact interpolatory model for a nearby full-order system; thus demonstrating backward stability. We also give evidence that for \h2-optimal interpolation points, interpolatory model reduction is robust with respect to perturbations due to inexact solves. Finally, we demonstrate the effecitveness of direct use of inexact solves in optimal H2{\mathcal H}_2 approximation. The result is an effective model reduction strategy that is applicable in realistically large-scale settings.Comment: 42 pages, 5 figure
    corecore