84,746 research outputs found

    On general systems with network-enhanced complexities

    Get PDF
    In recent years, the study of networked control systems (NCSs) has gradually become an active research area due to the advantages of using networked media in many aspects such as the ease of maintenance and installation, the large flexibility and the low cost. It is well known that the devices in networks are mutually connected via communication cables that are of limited capacity. Therefore, some network-induced phenomena have inevitably emerged in the areas of signal processing and control engineering. These phenomena include, but are not limited to, network-induced communication delays, missing data, signal quantization, saturations, and channel fading. It is of great importance to understand how these phenomena influence the closed-loop stability and performance properties

    Evolutionary L∞ identification and model reduction for robust control

    Get PDF
    An evolutionary approach for modern robust control oriented system identification and model reduction in the frequency domain is proposed. The technique provides both an optimized nominal model and a 'worst-case' additive or multiplicative uncertainty bounding function which is compatible with robust control design methodologies. In addition, the evolutionary approach is applicable to both continuous- and discrete-time systems without the need for linear parametrization or a confined problem domain for deterministic convex optimization. The proposed method is validated against a laboratory multiple-input multiple-output (MIMO) test rig and benchmark problems, which show a higher fitting accuracy and provides a tighter L�¢���� error bound than existing methods in the literature do

    General computational approach for optimal fault detection

    Get PDF
    We propose a new computational approach to solve the optimal fault detection problem in the most general setting. The proposed procedure is free of any technical assumptions and is applicable to both proper and non-proper systems. This procedure forms the basis of an integrated numerically reliable state-space algorithm, which relies on powerful descriptor systems techniques to solve the underlying computational subproblems. The new algorithm has been implemented into a Fault Detection Toolbox for Matlab

    The extended symplectic pencil and the finite-horizon LQ problem with two-sided boundary conditions

    Get PDF
    This note introduces a new analytic approach to the solution of a very general class of finite-horizon optimal control problems formulated for discrete-time systems. This approach provides a parametric expression for the optimal control sequences, as well as the corresponding optimal state trajectories, by exploiting a new decomposition of the so-called extended symplectic pencil. Importantly, the results established in this paper hold under assumptions that are weaker than the ones considered in the literature so far. Indeed, this approach does not require neither the regularity of the symplectic pencil, nor the modulus controllability of the underlying system. In the development of the approach presented in this paper, several ancillary results of independent interest on generalised Riccati equations and on the eigenstructure of the extended symplectic pencil will also be presented

    A parabolic approach to the control of opinion spreading

    Full text link
    We analyze the problem of controlling to consensus a nonlinear system modeling opinion spreading. We derive explicit exponential estimates on the cost of approximately controlling these systems to consensus, as a function of the number of agents N and the control time-horizon T. Our strategy makes use of known results on the controllability of spatially discretized semilinear parabolic equations. Both systems can be linked through time-rescalin
    corecore