229 research outputs found

    On general systems with network-enhanced complexities

    Get PDF
    In recent years, the study of networked control systems (NCSs) has gradually become an active research area due to the advantages of using networked media in many aspects such as the ease of maintenance and installation, the large flexibility and the low cost. It is well known that the devices in networks are mutually connected via communication cables that are of limited capacity. Therefore, some network-induced phenomena have inevitably emerged in the areas of signal processing and control engineering. These phenomena include, but are not limited to, network-induced communication delays, missing data, signal quantization, saturations, and channel fading. It is of great importance to understand how these phenomena influence the closed-loop stability and performance properties

    Moving horizon estimation for networked systems with quantized measurements and packet dropouts

    Get PDF
    published_or_final_versio

    Remote State Estimation with Smart Sensors over Markov Fading Channels

    Full text link
    We consider a fundamental remote state estimation problem of discrete-time linear time-invariant (LTI) systems. A smart sensor forwards its local state estimate to a remote estimator over a time-correlated MM-state Markov fading channel, where the packet drop probability is time-varying and depends on the current fading channel state. We establish a necessary and sufficient condition for mean-square stability of the remote estimation error covariance as ρ2(A)ρ(DM)<1\rho^2(\mathbf{A})\rho(\mathbf{DM})<1, where ρ()\rho(\cdot) denotes the spectral radius, A\mathbf{A} is the state transition matrix of the LTI system, D\mathbf{D} is a diagonal matrix containing the packet drop probabilities in different channel states, and M\mathbf{M} is the transition probability matrix of the Markov channel states. To derive this result, we propose a novel estimation-cycle based approach, and provide new element-wise bounds of matrix powers. The stability condition is verified by numerical results, and is shown more effective than existing sufficient conditions in the literature. We observe that the stability region in terms of the packet drop probabilities in different channel states can either be convex or concave depending on the transition probability matrix M\mathbf{M}. Our numerical results suggest that the stability conditions for remote estimation may coincide for setups with a smart sensor and with a conventional one (which sends raw measurements to the remote estimator), though the smart sensor setup achieves a better estimation performance.Comment: The paper has been accepted by IEEE Transactions on Automatic Control. Copyright may be transferred without notice, after which this version may no longer be accessibl

    A novel robust predictive control system over imperfect networks

    Get PDF
    This paper aims to study on feedback control for a networked system with both uncertain delays, packet dropouts and disturbances. Here, a so-called robust predictive control (RPC) approach is designed as follows: 1- delays and packet dropouts are accurately detected online by a network problem detector (NPD); 2- a so-called PI-based neural network grey model (PINNGM) is developed in a general form for a capable of forecasting accurately in advance the network problems and the effects of disturbances on the system performance; 3- using the PINNGM outputs, a small adaptive buffer (SAB) is optimally generated on the remote side to deal with the large delays and/or packet dropouts and, therefore, simplify the control design; 4- based on the PINNGM and SAB, an adaptive sampling-based integral state feedback controller (ASISFC) is simply constructed to compensate the small delays and disturbances. Thus, the steady-state control performance is achieved with fast response, high adaptability and robustness. Case studies are finally provided to evaluate the effectiveness of the proposed approach

    Robust H∞ filtering for markovian jump systems with randomly occurring nonlinearities and sensor saturation: The finite-horizon case

    Get PDF
    This article is posted with the permission of IEEE - Copyright @ 2011 IEEEThis paper addresses the robust H∞ filtering problem for a class of discrete time-varying Markovian jump systems with randomly occurring nonlinearities and sensor saturation. Two kinds of transition probability matrices for the Markovian process are considered, namely, the one with polytopic uncertainties and the one with partially unknown entries. The nonlinear disturbances are assumed to occur randomly according to stochastic variables satisfying the Bernoulli distributions. The main purpose of this paper is to design a robust filter, over a given finite-horizon, such that the H∞ disturbance attenuation level is guaranteed for the time-varying Markovian jump systems in the presence of both the randomly occurring nonlinearities and the sensor saturation. Sufficient conditions are established for the existence of the desired filter satisfying the H∞ performance constraint in terms of a set of recursive linear matrix inequalities. Simulation results demonstrate the effectiveness of the developed filter design scheme.This work was supported in part by the National Natural Science Foundation of China under Grants 61028008, 60825303, and 61004067, National 973 Project under Grant 2009CB320600, the Key Laboratory of Integrated Automation for the Process Industry (Northeastern University) from the Ministry of Education of China, the Engineering and Physical Sciences Research Council (EPSRC) of the U.K., under Grant GR/S27658/01, the Royal Society of the U.K., and the Alexander von Humboldt Foundation of Germany
    corecore