35,755 research outputs found

    Dominating direct products of graphs

    Get PDF
    AbstractAn upper bound for the domination number of the direct product of graphs is proved. It in particular implies that for any graphs G and H, γ(G×H)⩽3γ(G)γ(H). Graphs with arbitrarily large domination numbers are constructed for which this bound is attained. Concerning the upper domination number we prove that Γ(G×H)⩾Γ(G)Γ(H), thus confirming a conjecture from [R. Nowakowski, D.F. Rall, Associative graph products and their independence, domination and coloring numbers, Discuss. Math. Graph Theory 16 (1996) 53–79]. Finally, for paired-domination of direct products we prove that γpr(G×H)⩽γpr(G)γpr(H) for arbitrary graphs G and H, and also present some infinite families of graphs that attain this bound

    Locating and Total Dominating Sets of Direct Products of Complete Graphs

    Get PDF
    A set S of vertices in a graph G = (V,E) is a metric-locating-total dominating set of G if every vertex of V is adjacent to a vertex in S and for every u ≠ v in V there is a vertex x in S such that d(u,x) ≠ d(v,x). The metric-location-total domination number \gamma^M_t(G) of G is the minimum cardinality of a metric-locating-total dominating set in G. For graphs G and H, the direct product G × H is the graph with vertex set V(G) × V(H) where two vertices (x,y) and (v,w) are adjacent if and only if xv in E(G) and yw in E(H). In this paper, we determine the lower bound of the metric-location-total domination number of the direct products of complete graphs. We also determine some exact values for some direct products of two complete graphs

    Domination Numbers of Semi-strong Products of Graphs

    Get PDF
    This thesis examines the domination number of the semi-strong product of two graphs G and H where both G and H are simple and connected graphs. The product has an edge set that is the union of the edge set of the direct product of G and H together with the cardinality of V(H), copies of G. Unlike the other more common products (Cartesian, direct and strong), the semi-strong product is neither commutative nor associative. The semi-strong product is not supermultiplicative, so it does not satisfy a Vizing like conjecture. It is also not submultiplicative so it shares these two properties with the direct product. After giving the basic definitions related with graphs, domination in graphs and basic properties of the semi-strong product, this paper includes a general upper bound for the domination of the semi-strong product of any two graphs G and H as less than or equal to twice the domination numbers of each graph individually. Similar general results for the semi-strong product perfect-paired domination numbers of any two graphs G and H, as well as semi-strong products of some specific types of cycle graphs are also addressed
    • …
    corecore