576,823 research outputs found

    Synthesizing a Fractional v=2/3 State from Particle and Hole States

    Get PDF
    Topological edge-reconstruction occurs in hole-conjugate states of the fractional quantum Hall effect. The frequently studied polarized state of filling factor v=2/3 was originally proposed to harbor two counter-propagating edge modes: a downstream v=1 and an upstream v=1/3. However, charge equilibration between these two modes always led to an observed downstream v=2/3 charge mode accompanied by an upstream neutral mode (preventing an observation of the original proposal). Here, we present a new approach to synthetize the v=2/3 edge mode from its basic counter-propagating charged constituents, allowing a controlled equilibration between the two counter-propagating charge modes. This novel platform is based on a carefully designed double-quantum-well, which hosts two populated electronic sub-bands (lower and upper), with corresponding filling factors, vl & vu. By separating the 2D plane to two gated intersecting halves, each with different fillings, counter-propagating chiral modes can be formed along the intersection line. Equilibration between these modes can be controlled with the top gates' voltage and the magnetic field. Our measurements of the two-terminal conductance G2T and the presence of a neutral mode allowed following the transition from the non-equilibrated charged modes, manifested by G2T=(4/3)e2/h, to the fully equilibrated modes, with a downstream charge mode with G2T=(2/3)e2/h accompanied by an upstream neutral mode.Comment: 16 pages,4 figure

    Switch between critical percolation modes in city traffic dynamics

    Get PDF
    Percolation transition is widely observed in networks ranging from biology to engineering. While much attention has been paid to network topologies, studies rarely focus on critical percolation phenomena driven by network dynamics. Using extensive real data, we study the critical percolation properties in city traffic dynamics. Our results suggest that two modes of different critical percolation behaviors are switching in the same network topology under different traffic dynamics. One mode of city traffic (during nonrush hours or days off) has similar critical percolation characteristics as small world networks, while the other mode (during rush hours on working days) tends to behave as a 2D lattice. This switching behavior can be understood by the fact that the high-speed urban roads during nonrush hours or days off (that are congested during rush hours) represent effective long-range connections, like in small world networks. Our results might be useful for understanding and improving traffic resilience.Comment: 8 pages, 4 figures, Daqing Li, Ziyou Gao and H. Eugene Stanley are the corresponding authors ([email protected], [email protected], [email protected]
    • …
    corecore