390 research outputs found

    A recursive LMI-based algorithm for efficient vertex reduction in LPV systems

    Get PDF
    This paper proposes a new algorithm to reduce the number of gains of a polytopic LPV controller considering generic tuples of vertices, for which a common controller gain can be used. The use of Frobenius norm and the inclusion of the input matrix in the LMIs perturbation matrix allows decreasing the conservativeness to select vertices which are combinable, with respect to a previous approach based on Gershgorin circles. A combinability metric that can be applied to an arbitrary partition of the set of vertices is defined. Then, a recursive algorithm finds a lesser-fragmented combinable partition at each iteration by combining together two elements of a partition. The algorithm aims at finding combinable partitions with minimal cardinality in fewer attempts, always preserving the original control performance specifications. The proposed method is validated using numerical examples, a twin rotor MIMO system and a two-link robotic manipulator.This work has been co-financed by the Spanish State Research Agency (AEI) and the European Regional Development Fund (ERFD) through the project SCAV (ref. MINECO DPI2017-88403-R), by the European Regional Development Fund of the European Union in the framework of the ERDF Operational Program of Catalonia 2014-2020 (ref. 001-P-001643 Looming Factory) and by the DGR of Generalitat de Catalunya (SAC group ref. 2017/SGR/482).Peer ReviewedPostprint (author's final draft

    LPV system identification using series expansion models

    Full text link

    MULTI-MODEL SYSTEMS IDENTIFICATION AND APPLICATION

    Get PDF

    Systems and control : 21th Benelux meeting, 2002, March 19-21, Veldhoven, The Netherlands

    Get PDF
    Book of abstract

    Recent Advances in Robust Control

    Get PDF
    Robust control has been a topic of active research in the last three decades culminating in H_2/H_\infty and \mu design methods followed by research on parametric robustness, initially motivated by Kharitonov's theorem, the extension to non-linear time delay systems, and other more recent methods. The two volumes of Recent Advances in Robust Control give a selective overview of recent theoretical developments and present selected application examples. The volumes comprise 39 contributions covering various theoretical aspects as well as different application areas. The first volume covers selected problems in the theory of robust control and its application to robotic and electromechanical systems. The second volume is dedicated to special topics in robust control and problem specific solutions. Recent Advances in Robust Control will be a valuable reference for those interested in the recent theoretical advances and for researchers working in the broad field of robotics and mechatronics
    • …
    corecore