16,370 research outputs found

    A Demonstration of Spectral and Spatial Interferometry at THz Frequencies

    Full text link
    A laboratory prototype spectral/spatial interferometer has been constructed to demonstrate the feasibility of the double Fourier technique at Far Infrared (FIR) wavelengths (0.15 - 1 THz). It is planned to use this demonstrator to investigate and validate important design features and data processing methods for future astronomical FIR interferometer instruments. In building this prototype we have had to address several key technologies to provide an end-end system demonstration of this double Fourier interferometer. We report on the first results taken when viewing single slit and double slit sources at the focus of a large collimator used to simulate real sources at infinity. The performance of the prototype instrument for these specific field geometries is analyzed to compare with the observed interferometric fringes and to demonstrate image reconstruction capabilities.Comment: Accepted for publication in Applied Optic

    Time-ordered data simulation and map-making for the PIXIE Fourier transform spectrometer

    Get PDF
    We develop a time-ordered data simulator and map-maker for the proposed PIXIE Fourier transform spectrometer and use them to investigate the impact of polarization leakage, imperfect collimation, elliptical beams, sub-pixel effects, correlated noise and spectrometer mirror jitter on the PIXIE data analysis. We find that PIXIE is robust to all of these effects, with the exception of mirror jitter which could become the dominant source of noise in the experiment if the jitter is not kept significantly below 0.1ÎŒms0.1\mu m\sqrt{s}. Source code is available at https://github.com/amaurea/pixie.Comment: 27 pages, 15 figures. Accepted for publication in JCA

    Multimode bolometer development for the PIXIE instrument

    Full text link
    The Primordial Inflation Explorer (PIXIE) is an Explorer-class mission concept designed to measure the polarization and absolute intensity of the cosmic microwave background. In the following, we report on the design, fabrication, and performance of the multimode polarization-sensitive bolometers for PIXIE, which are based on silicon thermistors. In particular we focus on several recent advances in the detector design, including the implementation of a scheme to greatly raise the frequencies of the internal vibrational modes of the large-area, low-mass optical absorber structure consisting of a grid of micromachined, ion-implanted silicon wires. With ∌30\sim30 times the absorbing area of the spider-web bolometers used by Planck, the tensioning scheme enables the PIXIE bolometers to be robust in the vibrational and acoustic environment at launch of the space mission. More generally, it could be used to reduce microphonic sensitivity in other types of low temperature detectors. We also report on the performance of the PIXIE bolometers in a dark cryogenic environment.Comment: 10 pages, 7 figure

    Characterizing Exoplanets in the Visible and Infrared: A Spectrometer Concept for the EChO Space Mission

    Get PDF
    Transit-spectroscopy of exoplanets is one of the key observational techniques to characterize the extrasolar planet and its atmosphere. The observational challenges of these measurements require dedicated instrumentation and only the space environment allows an undisturbed access to earth-like atmospheric features such as water or carbon-dioxide. Therefore, several exoplanet-specific space missions are currently being studied. One of them is EChO, the Exoplanet Characterization Observatory, which is part of ESA's Cosmic Vision 2015-2025 program, and which is one of four candidates for the M3 launch slot in 2024. In this paper we present the results of our assessment study of the EChO spectrometer, the only science instrument onboard this spacecraft. The instrument is a multi-channel all-reflective dispersive spectrometer, covering the wavelength range from 400 nm to 16 microns simultaneously with a moderately low spectral resolution. We illustrate how the key technical challenge of the EChO mission - the high photometric stability - influences the choice of spectrometer concept and drives fundamentally the instrument design. First performance evaluations underline the fitness of the elaborated design solution for the needs of the EChO mission.Comment: 20 pages, 8 figures, accepted for publication in the Journal of Astronomical Instrumentatio

    In-situ defect detection systems for R2R flexible PV films

    Get PDF
    The atomic layer deposition technique (ALD) is used to apply a thin (40-100 nm thick) barrier coating of Al2O3 on polymer substrates for flexible PV cells, to minimise and control the degradation caused by water vapour ingress. However, defects appearing on the film surfaces during the Al2O3 ALD growth have been seen to be highly significant in deterioration of the PV module efficiency and lifespan [1]. In order to improve the process yield and product efficiency, it is desirable to develop an inspection system that can detect transparent barrier film defects in the production line during film processing. Off-line detection of defects in transparent PV barrier films is difficult and time consuming. Consequently, implementing an accurate in-situ defects inspection system in the production environment is even more challenging, since the requirements on positioning, fast measurement, long term stability and robustness against environmental disturbance are demanding. For in-situ R2R defects inspection systems the following conditions need to be satisfied by the inspection tools. Firstly the measurement must be fast and have no physical contact with the inspected film surface. Secondly the measurement system must be robust against the environmental disturbance inspection. Finally the system should have sub-micrometre lateral resolution and nanometre vertical resolution in order to be able to distinguish defects on the film surface. Optical interferometry techniques have the potentially to be used as a solution for such application. However they are extremely sensitive to environmental noise such as mechanical vibration, air turbulence and temperature drift. George [2] reported that a single shot interferometry system “FlexCam” developed by 4D Technology being used currently to detect defects for PV barrier films manufactured by R2R technology. It is robust against environmental disturbances; but it has a limited vertical range, which is restricted by the phase ambiguity of the phase shift interferometry. This vertical measurement range (a few hundreds nanometres) is far less than the normal vertical range of defects (a few micrometres up to a few tens micrometres). It is not possible to detect the majority of defects in the R2R flexible PV barrier films

    Ultra-thin titanium nitride films for refractory spectral selectivity

    Full text link
    We demonstrate a selectively emitting optical Fabry-P\'erot resonator based on a few-nm-thin continuous metallic titanium nitride film, separated by a dielectric spacer from an optically thick titanium nitride back-reflector, which exhibits excellent stability at 1070 K against chemical degradation, thin-film instabilities and melting point depression. The structure paves the way to the design and fabrication of refractory thermal emitters using the well-established processes known from the field of multilayer and rugate optical filters. We demonstrate that a few-nanometer thick films of titanium nitride can be stable under operation at temperatures exceeding 1070 K. This type of selective emitter provides a means towards near-infrared thermal emission that could potentially be tailored to the accuracy level known from rugate optical filters.Comment: 16 pages, 6 figure

    Detailed state of the art review for the different on-line/in-line oil analysis techniques in context of wind turbine gearboxes

    Get PDF
    The main driver behind developing advanced condition monitoring (CM) systems for the wind energy industry is the delivery of improved asset management regarding the operation and maintenance of the gearbox and other wind turbine components and systems. Current gearbox CM systems mainly detect faults by identifying ferrous materials, water, and air within oil by changes in certain properties such as electrical fields. In order to detect oil degradation and identify particles, more advanced devices are required to allow a better maintenance regime to be established. Current technologies available specifically for this purpose include Fourier transform infrared (FTIR) spectroscopy and ferrography. There are also several technologies that have not yet been or have been recently applied to CM problems. After reviewing the current state of the art, it is recommended that a combination of sensors would be used that analyze different characteristics of the oil. The information individually would not be highly accurate but combined it is fully expected that greater accuracy can be obtained. The technologies that are suitable in terms of cost, size, accuracy, and development are online ferrography, selective fluorescence spectroscopy, scattering measurements, FTIR, photoacoustic spectroscopy, and solid state viscometers
    • 

    corecore