7,992 research outputs found

    Optimal control of nonlinear partially-unknown systems with unsymmetrical input constraints and its applications to the optimal UAV circumnavigation problem

    Full text link
    Aimed at solving the optimal control problem for nonlinear systems with unsymmetrical input constraints, we present an online adaptive approach for partially unknown control systems/dynamics. The designed algorithm converges online to the optimal control solution without the knowledge of the internal system dynamics. The optimality of the obtained control policy and the stability for the closed-loop dynamic optimality are proved theoretically. The proposed method greatly relaxes the assumption on the form of the internal dynamics and input constraints in previous works. Besides, the control design framework proposed in this paper offers a new approach to solve the optimal circumnavigation problem involving a moving target for a fixed-wing unmanned aerial vehicle (UAV). The control performance of our method is compared with that of the existing circumnavigation control law in a numerical simulation and the simulation results validate the effectiveness of our algorithm

    Bayesian model predictive control: Efficient model exploration and regret bounds using posterior sampling

    Full text link
    Tight performance specifications in combination with operational constraints make model predictive control (MPC) the method of choice in various industries. As the performance of an MPC controller depends on a sufficiently accurate objective and prediction model of the process, a significant effort in the MPC design procedure is dedicated to modeling and identification. Driven by the increasing amount of available system data and advances in the field of machine learning, data-driven MPC techniques have been developed to facilitate the MPC controller design. While these methods are able to leverage available data, they typically do not provide principled mechanisms to automatically trade off exploitation of available data and exploration to improve and update the objective and prediction model. To this end, we present a learning-based MPC formulation using posterior sampling techniques, which provides finite-time regret bounds on the learning performance while being simple to implement using off-the-shelf MPC software and algorithms. The performance analysis of the method is based on posterior sampling theory and its practical efficiency is illustrated using a numerical example of a highly nonlinear dynamical car-trailer system

    Sparse Wide-Area Control of Power Systems using Data-driven Reinforcement Learning

    Full text link
    In this paper we present an online wide-area oscillation damping control (WAC) design for uncertain models of power systems using ideas from reinforcement learning. We assume that the exact small-signal model of the power system at the onset of a contingency is not known to the operator and use the nominal model and online measurements of the generator states and control inputs to rapidly converge to a state-feedback controller that minimizes a given quadratic energy cost. However, unlike conventional linear quadratic regulators (LQR), we intend our controller to be sparse, so its implementation reduces the communication costs. We, therefore, employ the gradient support pursuit (GraSP) optimization algorithm to impose sparsity constraints on the control gain matrix during learning. The sparse controller is thereafter implemented using distributed communication. Using the IEEE 39-bus power system model with 1149 unknown parameters, it is demonstrated that the proposed learning method provides reliable LQR performance while the controller matched to the nominal model becomes unstable for severely uncertain systems.Comment: Submitted to IEEE ACC 2019. 8 pages, 4 figure
    • …
    corecore