11,573 research outputs found

    The H

    Get PDF
    This paper discusses the state feedback H∞ control problem for a class of bilinear stochastic systems driven by both Brownian motion and Poisson jumps. By completing square method, we obtain the H∞ control by solutions of the corresponding Hamilton-Jacobi equations (HJE). By the tensor power series method, we also shift such HJEs into a kind of Riccati equations, and the H∞ control is represented with the form of tensor power series

    General Linear Quadratic Optimal Stochastic Control Problem Driven by a Brownian Motion and a Poisson Random Martingale Measure with Random Coefficients

    Full text link
    The main purpose of this paper is to discuss detailed the stochastic LQ control problem with random coefficients where the linear system is a multidimensional stochastic differential equation driven by a multidimensional Brownian motion and a Poisson random martingale measure. In the paper, we will establish the connections of the multidimensional Backward stochastic Riccati equation with jumps (BSRDEJ in short form) to the stochastic LQ problem and to the associated Hamilton systems. By the connections, we show the optimal control have the state feedback representation. Moreover, we will show the existence and uniqueness result of the multidimensional BSRDEJ for the case where the generator is bounded linear dependence with respect to the unknowns martingale term

    Marcus versus Stratonovich for Systems with Jump Noise

    Full text link
    The famous It\^o-Stratonovich dilemma arises when one examines a dynamical system with a multiplicative white noise. In physics literature, this dilemma is often resolved in favour of the Stratonovich prescription because of its two characteristic properties valid for systems driven by Brownian motion: (i) it allows physicists to treat stochastic integrals in the same way as conventional integrals, and (ii) it appears naturally as a result of a small correlation time limit procedure. On the other hand, the Marcus prescription [IEEE Trans. Inform. Theory 24, 164 (1978); Stochastics 4, 223 (1981)] should be used to retain (i) and (ii) for systems driven by a Poisson process, L\'evy flights or more general jump processes. In present communication we present an in-depth comparison of the It\^o, Stratonovich, and Marcus equations for systems with multiplicative jump noise. By the examples of areal-valued linear system and a complex oscillator with noisy frequency (the Kubo-Anderson oscillator) we compare solutions obtained with the three prescriptions.Comment: 14 pages, 4 figure

    Forward-Backward Doubly Stochastic Differential Equations with Random Jumps and Stochastic Partial Differential-Integral Equations

    Full text link
    In this paper, we study forward-backward doubly stochastic differential equations driven by Brownian motions and Poisson process (FBDSDEP in short). Both the probabilistic interpretation for the solutions to a class of quasilinear stochastic partial differential-integral equations (SPDIEs in short) and stochastic Hamiltonian systems arising in stochastic optimal control problems with random jumps are treated with FBDSDEP. Under some monotonicity assumptions, the existence and uniqueness results for measurable solutions of FBDSDEP are established via a method of continuation. Furthermore, the continuity and differentiability of the solutions of FBDSDEP depending on parameters is discussed. Finally, the probabilistic interpretation for the solutions to a class of quasilinear SPDIEs is given

    The adapted solution and comparison theorem for backward stochastic differential equations with Poisson jumps and applications

    Get PDF
    This paper deals with a class of backward stochastic differential equations with Poisson jumps and with random terminal times. We prove the existence and uniqueness result of adapted solution for such a BSDE under the assumption of non-Lipschitzian coefficient. We also derive two comparison theorems by applying a general Girsanov theorem andthe linearized technique on the coefficient. By these we first show the existence and uniqueness of minimal solution for one-dimensional BSDE with jumps when its coefficient is continuous and has a linear growth. Then we give a general Feynman-Kac formula for a class of parabolic types of second-order partial differential and integral equations (PDIEs) by using the solution of corresponding BSDE with jumps. Finally, we exploit above Feynman-Kac formula and related comparison theorem to provide a probabilistic formula for the viscosity solution of a quasi-linear PDIE of parabolic type
    corecore