294 research outputs found

    A Unified Framework for the Study of Anti-Windup Designs

    Get PDF
    We present a unified framework for the study of linear time-invariant (LTI) systems subject to control input nonlinearities. The framework is based on the following two-step design paradigm: "Design the linear controller ignoring control input nonlinearities and then add anti-windup bumpless transfer (AWBT) compensation to minimize the adverse eflects of any control input nonlinearities on closed loop performance". The resulting AWBT compensation is applicable to multivariable controllers of arbitrary structure and order. All known LTI anti-windup and/or bumpless transfer compensation schemes are shown to be special cases of this framework. It is shown how this framework can handle standard issues such as the analysis of stability and performance with or without uncertainties in the plant model. The actual analysis of stability and performance, and robustness issues are problems in their own right and hence not detailed here. The main result is the unification of existing schemes for AWBT compensation under a general framework

    Process operating mode monitoring : switching online the right controller

    Get PDF
    This paper presents a structure which deals with process operating mode monitoring and allows the control law reconfiguration by switching online the right controller. After a short review of the advances in switching based control systems during the last decade, we introduce our approach based on the definition of operating modes of a plant. The control reconfiguration strategy is achieved by online selection of an adequate controller, in a case of active accommodation. The main contribution lies in settling up the design steps of the multicontroller structure and its accurate integration in the operating mode detection and accommodation loop. Simulation results show the effectiveness of the operating mode detection and accommodation (OMDA) structure for which the design steps propose a method to study the asymptotic stability, switching performances improvement, and the tuning of the multimodel based detector

    Improved Wind Turbine Control Strategies for Maximizing Power Output and Minimizing Power Flicker

    Get PDF
    For reducing the cost of energy (COE) for wind power, controls techniques are important for enhancing energy yield, reducing structural load and improving power quality. This thesis presents the control strategies studies for wind turbine both from the perspectives of both maximizing power output and reducing power flicker and structural load, First, a self-optimizing robust control scheme is developed with the objective of maximizing the power output of a variable speed wind turbine with doubly-fed induction generator (DFIG) operated in Region 2. Wind power generation can be divided into two stages: conversion from aerodynamic power to rotor (mechanical) power and conversion from rotor power to the electrical (grid) power. In this work, the maximization of power generation is achieved by a two-loop control structure in which the power control for each stage has intrinsic synergy. The outer loop is an Extremum Seeking Control (ESC) based generator torque regulation via the rotor power feedback. The ESC can search for the optimal torque constant to maximize the rotor power without wind measurement or accurate knowledge of power map. The inner loop is a vector-control based scheme that can both regulate the generator torque requested by the ESC and also maximize the conversion from the rotor power to grid power. In particular, an ∞ controller is synthesized for maximizing, with performance specifications defined based upon the spectrum of the rotor power obtained by the ESC. Also, the controller is designed to be robust against the variations of some generator parameters. The proposed control strategy is validated via simulation study based on the synergy of several software packages including the TurbSim and FAST developed by NREL, Simulink and SimPowerSystems. Then, a bumpless transfer scheme is proposed for inter-region controller switching scheme in order to reduce the power fluctuation and structural load under fluctuating wind conditions. This study considers the division of Region 2, Region 2.5 and Region 3 in the neighborhood of the rated wind speed. When wind, varies around the rated wind speed, the switching of control can lead to significant fluctuation in power and voltage supply, as well as structural loading. To smooth the switch and improve the tracking, two different bumpless transfer methods, Conditioning and Linear Quadratic techniques, are employed for different inter-region switching situations. The conditioning bumpless transfer approach adopted for switching between Region 2 maximum power capture controls to Region 2.5 rotor speed regulation via generator torque. For the switch between Region 2.5 and Region 3, the generator torque windup at rated value and pitch controller become online to limit the load of wind turbine. LQ technique is posed to reduce the discontinuity at the switch between torque controller and pitch controller by using an extra compensator. The flicker emission of the turbine during the switching is calculated to evaluate power fluctuation. The simulation results demonstrated the effectiveness of the proposed scheme of inter-region switching, with significant reduction of power flicker as well as the damage equivalent load

    A model-based robust control approach for bilateral teleoperation systems

    Get PDF

    Lateral MIMO-control of a bus

    Get PDF

    PID control system analysis and design

    Get PDF
    With its three-term functionality offering treatment of both transient and steady-state responses, proportional-integral-derivative (PID) control provides a generic and efficient solution to realworld control problems. The wide application of PID control has stimulated and sustained research and development to "get the best out of PID", and "the search is on to find the next key technology or methodology for PID tuning". This article presents remedies for problems involving the integral and derivative terms. PID design objectives, methods, and future directions are discussed. Subsequently, a computerized, simulation-based approach is presented, together with illustrative design results for first-order, higher order, and nonlinear plants. Finally, we discuss differences between academic research and industrial practice, so as to motivate new research directions in PID control

    Bumpless transfer for switched systems

    Get PDF
    Tres estrategias de transferencia sin perturbaciones fueron evaluadas para sistemas conmutados. Un método de transferencia sin perturbaciones basado en control predictivo fue desarrollado y dos teoremas para la estabilidad interna del sistema incluyendo las primeras dos estrategias de transferencia sin perturbaciones fueron encontrados y demostrados. Finalmente, los métodos de transferencia sin perturbaciones y las condiciones de estabilidad fueron aplicados sobre un sistema de cintas magnéticas.Three bumpless transfer strategies were evaluated for switched systems. A bumpless transfer method based on predictive control was developed and two theorems for the internal stability of the overall system with the first two bumpless transfer methods were found and demonstrated. Finally, the bumpless transfer methods and the stability conditions were applied on a web winding system.Magíster en Ingeniería ElectrónicaMaestrí

    Stabilization of Compressor Surge Using Gain-Scheduled Controller

    Get PDF
    Gain scheduling is a control method that is used in nonlinear systems to optimize their controlled performance and robustness over a wide range of operating conditions. It is one of the most commonly used controller design approaches for nonlinear systems. In this control technique, the controller consists of a collection of linear controllers, each of which provides satisfactory closed-loop stability and performance for a small operating region, and combined they guarantee the stability of the system along the entire operating range. The operating region of the system is determined by a scheduling signal, also known as the scheduling variable, which may be either exogenous or endogenous with respect to the plan. A good design of the gain-scheduled controller requires a suitable selection of the scheduling variables to properly reflect the dynamics of the system. In this thesis, we apply the gain scheduling control method to the control of compression systems with active magnetic bearings (AMBs). First, a gain-scheduled controller is designed and tested for the rotor levitation control of the AMB system. The levitation controller is designed to guarantee robust rotor levitation over a wide range of rotating speeds. We show through numerical simulation that the rotor vibration is contained in the presence of uncertainties introduced by speed dependent gyroscopic forces. Next, we implement the gain scheduling control method to the active stabilization of compressor surge in a compression system using the AMBs as actuators. Recently, Yoon et al. [1] showed that AMBs can be used to stabilize the surge instability in a compression system. In this thesis, we demonstrate that gain scheduling control can effectively extend the stable operating region of the compression system beyond the limits presented in [1]. For the stabilization of surge, a gain-scheduled controller was obtained by combining six linear controllers that together they cover the full operating range of the compression system. We were able to demonstrate through numerical simulation that the designed surge controller is effective in suppressing the instability down to a throttle valve opening of 12%, and in the presence of random flow disturbance and actuator saturation. An observer-based technique was implemented to achieve a bumpless and smooth transfer when switching between the linear controllers
    • 

    corecore