1,620 research outputs found

    Performance-Robust Dynamic Feedback Control of Lipschitz Nonlinear Systems

    Get PDF
    This dissertation addresses the dynamic control of nonlinear systems with finite energy noise in the state and measurement equations. Regional eigenvalue assignment (REA) is used to ensure that the state estimate error is driven to zero significantly faster than the state itself. Moreover, the controller is designed for the resulting closed loop system to achieve any one of a set of general performance criteria (GPC). The nonlinear model is assumed to have a Lipschitz nonlinearity both in the state and measurement equations. By using the norm bound of the nonlinearity, the controller is designed to be robust against all nonlinearities satisfying the norm-bound. A Luenberger-type nonlinear observer is used to estimate the system state, which is not directly measurable. The choice of the eigenvalue locations for the linear part of the system is based on the transient response specifications and the separation of the controller dynamics from the observer dynamics. Furthermore, the GPC are incorporated to achieve performance requirements such as H2, H∞, etc. The advantage of using GPC is it allows the designer flexibility in choosing a performance objective to tune the system. The design problem introduced in this dissertation uses various mathematical techniques to derive LMI conditions for the controller and observer design using REA, GPC, and the bounds on the Lipschitz nonlinearities. All work will be demonstrated in both continuous- and discrete-time. Illustrative examples in both time domains are given to demonstrate the proposed design procedure. Multiple numerical approaches are also presented and compared in simulations for ease of use, applicability, and conservatism

    On output feedback nonlinear model predictive control using high gain observers for a class of systems

    Get PDF
    In recent years, nonlinear model predictive control schemes have been derived that guarantee stability of the closed loop under the assumption of full state information. However, only limited advances have been made with respect to output feedback in connection to nonlinear predictive control. Most of the existing approaches for output feedback nonlinear model predictive control do only guarantee local stability. Here we consider the combination of stabilizing instantaneous NMPC schemes with high gain observers. For a special MIMO system class we show that the closed loop is asymptotically stable, and that the output feedback NMPC scheme recovers the performance of the state feedback in the sense that the region of attraction and the trajectories of the state feedback scheme are recovered for a high gain observer with large enough gain and thus leading to semi-global/non-local results

    3 sampled-data control of nonlinear systems

    No full text
    This chapter provides some of the main ideas resulting from recent developments in sampled-data control of nonlinear systems. We have tried to bring the basic parts of the new developments within the comfortable grasp of graduate students. Instead of presenting the more general results that are available in the literature, we opted to present their less general versions that are easier to understand and whose proofs are easier to follow. We note that some of the proofs we present have not appeared in the literature in this simplified form. Hence, we believe that this chapter will serve as an important reference for students and researchers that are willing to learn about this area of research
    • …
    corecore