791 research outputs found

    Robust H∞ filtering for markovian jump systems with randomly occurring nonlinearities and sensor saturation: The finite-horizon case

    Get PDF
    This article is posted with the permission of IEEE - Copyright @ 2011 IEEEThis paper addresses the robust H∞ filtering problem for a class of discrete time-varying Markovian jump systems with randomly occurring nonlinearities and sensor saturation. Two kinds of transition probability matrices for the Markovian process are considered, namely, the one with polytopic uncertainties and the one with partially unknown entries. The nonlinear disturbances are assumed to occur randomly according to stochastic variables satisfying the Bernoulli distributions. The main purpose of this paper is to design a robust filter, over a given finite-horizon, such that the H∞ disturbance attenuation level is guaranteed for the time-varying Markovian jump systems in the presence of both the randomly occurring nonlinearities and the sensor saturation. Sufficient conditions are established for the existence of the desired filter satisfying the H∞ performance constraint in terms of a set of recursive linear matrix inequalities. Simulation results demonstrate the effectiveness of the developed filter design scheme.This work was supported in part by the National Natural Science Foundation of China under Grants 61028008, 60825303, and 61004067, National 973 Project under Grant 2009CB320600, the Key Laboratory of Integrated Automation for the Process Industry (Northeastern University) from the Ministry of Education of China, the Engineering and Physical Sciences Research Council (EPSRC) of the U.K., under Grant GR/S27658/01, the Royal Society of the U.K., and the Alexander von Humboldt Foundation of Germany

    Stability Analysis for Markovian Jump Neutral Systems with Mixed Delays and Partially Known Transition Rates

    Get PDF
    The delay-dependent stability problem is studied for Markovian jump neutral systems with partial information on transition probabilities, and the considered delays are mixed and model dependent. By constructing the new stochastic Lyapunov-Krasovskii functional, which combined the introduced free matrices with the analysis technique of matrix inequalities, a sufficient condition for the systems with fully known transition rates is firstly established. Then, making full use of the transition rate matrix, the results are obtained for the other case, and the uncertain neutral Markovian jump system with incomplete transition rates is also considered. Finally, to show the validity of the obtained results, three numerical examples are provided

    Finite-Time Boundedness of Markov Jump System with Piecewise-Constant Transition Probabilities via Dynamic Output Feedback Control

    Get PDF
    This paper first investigates the problem of finite-time boundedness of Markovian jump system with piecewise-constant transition probabilities via dynamic output feedback control, which leads to both stochastic jumps and deterministic switches. Based on stochastic Lyapunov functional, the concept of finite-time boundedness, average dwell time, and the coupling relationship among time delays, several sufficient conditions are established for finite-time boundedness and H∞ filtering finite-time boundedness. The system trajectory stays within a prescribed bound. Finally, an example is given to illustrate the efficiency of the proposed method

    Filtering for discrete-time nonhomogeneous Markov jump systems with uncertainties

    Get PDF
    This paper studies the problem of robust H1 filtering for a class of uncertain discrete-time nonhomogeneous Markov jump systems. The time-varying jump transition probability matrix is described by a polytope. By Lyapunov function approach, mode-dependent and variation-dependent H1 filter is designed such that the resulting error dynamic system is stochastically stable and has a prescribed H1 performance index. A numerical example is given to illustrate the effectiveness of the developed techniques

    Analysis and synthesis of Markov Jump Linear systems with time-varying delays and partially known transition probabilities

    Get PDF
    In this note, the stability analysis and stabilization problems for a class of discrete-time Markov jump linear systems with partially known transition probabilities and time-varying delays are investigated. The time-delay is considered to be time-varying and has a lower and upper bounds. The transition probabilities of the mode jumps are considered to be partially known, which relax the traditional assumption in Markov jump systems that all of them must be completely known a priori. Following the recent study on the class of systems, a monotonicity is further observed in concern of the conservatism of obtaining the maximal delay range due to the unknown elements in the transition probability matrix. Sufficient conditions for stochastic stability of the underlying systems are derived via the linear matrix inequality (LMI) formulation, and the design of the stabilizing controller is further given. A numerical example is used to illustrate the developed theory. © 2008 IEEE.published_or_final_versio

    Weight Try-Once-Discard Protocol-Based L_2 L_infinity State Estimation for Markovian Jumping Neural Networks with Partially Known Transition Probabilities

    Full text link
    It was the L_2 L_infinity performance index that for the first time is initiated into the discussion on state estimation of delayed MJNNs with with partially known transition probabilities, which provides a more general promotion for the estimation error.The WTOD protocol is adopted to dispatch the sensor nodes so as to effectively alleviate the updating frequency of output signals. The hybrid effects of the time delays, Markov chain, and protocol parameters are apparently reflected in the co-designed estimator which can be solved by a combination of comprehensive matrix inequalities

    Necessary and sufficient conditions for analysis and synthesis of markov jump linear systems with incomplete transition descriptions

    Get PDF
    This technical note is concerned with exploring a new approach for the analysis and synthesis for Markov jump linear systems with incomplete transition descriptions. In the study, not all the elements of the transition rate matrices (TRMs) in continuous-time domain, or transition probability matrices (TPMs) in discrete-time domain are assumed to be known. By fully considering the properties of the TRMs and TPMs, and the convexity of the uncertain domains, necessary and sufficient criteria of stability and stabilization are obtained in both continuous and discrete time. Numerical examples are used to illustrate the results. © 2006 IEEE.published_or_final_versio

    Asynchronous H

    Get PDF
    This paper is devoted to the problem of asynchronous H∞ estimation for a class of two-dimensional (2D) nonhomogeneous Markovian jump systems with nonlocal sensor nonlinearity, where the nonlocal measurement nonlinearity is governed by a stochastic variable satisfying the Bernoulli distribution. The asynchronous estimation means that the switching of candidate filters may have a lag to the switching of system modes, and the varying character of transition probabilities is considered to reside in a convex polytope. The jumping process of the error system is modeled as a two-component Markov chain with extended varying transition probabilities. A stochastic parameter-dependent approach is provided for the design of H∞ filter such that, for randomly occurring nonlocal sensor nonlinearity, the corresponding error system is mean-square asymptotically stable and has a prescribed H∞ performance index. Finally, a numerical example is used to illustrate the effectiveness of the developed estimation method

    Stabilization of markovian systems via probability rate synthesis and output feedback

    Get PDF
    This technical note is concerned with the stabilization problem of Markovian jump linear systems via designing switching probability rate matrices and static output-feedback gains. A novel necessary and sufficient condition is established to characterize the switching probability rate matrices that guarantee the mean square stability of Markovian jump linear systems. Based on this, a necessary and sufficient condition is provided for the existence of desired controller gains and probability rate matrices. Extensions to the polytopic uncertain case are also provided. All the conditions are formulated in terms of linear matrix inequalities with some equality constraints, which can be solved by two modified cone complementarity linearization algorithms. Examples are given to show the effectiveness of the proposed method. © 2010 IEEE.published_or_final_versio
    • …
    corecore