201 research outputs found

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version

    Robust Tracking Control for Switched Fuzzy Systems with Fast Switching Controller

    Get PDF
    This paper addresses the problem of designing robust tracking controls for a class of switched fuzzy (SF) systems with time delay. A switched fuzzy system, which differs from existing ones, is firstly employed to describe a nonlinear system. Next, a fast switching controller consisting of a number of simple subcontrollers is proposed. The smooth transition is governed by using the fast switching controller. Tracking hybrid control schemes which are based upon a combination of the H∞ tracking theory, fast switching control algorithm, and switching law design are developed such that the H∞ model referent tracking performance is guaranteed. Since convex combination techniques are used to derive the delay independent criteria, some subsystems are allowed to be unstable. Finally, various comparisons of the elaborated examples are conducted to demonstrate the effectiveness of the proposed control design approach. All results illustrate good control performances as desired

    Nonlinear Pseudo State-Feedback Controller Design for Affine Fuzzy Large-Scale Systems with H∞ Performance

    Get PDF
    Acord transformatiu CRUE-CSICThis paper treats robust controller design for Affine Fuzzy Large-Scale Systems (AFLSS) composed of Takagi-Sugeno-Kang type fuzzy subsystems with offset terms, disturbances, uncertainties, and interconnections. Instead of fuzzy parallel distributed compensation, a decentralized nonlinear pseudo state-feedback is developed for each subsystem to stabilize the overall AFLSS. Using Lyapunov stability, sufficient conditions with low codemputational effort and free gains are derived in terms of matrix inequalities. The proposed controller guarantees asymptotic stability, robust stabilization, and H∞ control performance of the AFLSS. A numerical example is given to illustrate the feasibility and effectiveness of the proposed approach

    Integral Sliding Mode Control for Markovian Jump T-S Fuzzy Descriptor Systems Based on the Super-Twisting Algorithm

    Get PDF
    This paper investigates integral sliding mode control problems for Markovian jump T-S fuzzy descriptor systems via the super-twisting algorithm. A new integral sliding surface which is continuous is constructed and an integral sliding mode control scheme based on a variable gain super-twisting algorithm is presented to guarantee the well-posedness of the state trajectories between two consecutive switchings. The stability of the sliding motion is analyzed by considering the descriptor redundancy and the properties of fuzzy membership functions. It is shown that the proposed variable gain super-twisting algorithm is an extension of the classical single-input case to the multi-input case. Finally, a bio-economic system is numerically simulated to verify the merits of the method proposed

    Fuzzy-Model-Based Output Feedback Steering Control in Autonomous Driving Subject to Actuator Constraints

    Get PDF

    Discrete-time system conditional optimization based on Takagi-Sugeno fuzzy model using the full transfer function

    Get PDF
    The study proposes a novel method for synthesis of a discrete-time parallel distributed compensation (PDC) controller for the nonlinear discrete-time Takagi–Sugeno (TS) fuzzy plant model. For each of the fuzzy plant model linear subsystems, a local linear first order proportional-sum (PS) controller is designed. The algebraic technique is used in two-dimensional parameter space, utilizing the characteristic polynomial of the row nondegenerate full transfer function matrix. Each system’s relative stability is accomplished in relation to the selected damping coefficient. The supplementary criterion is the minimal value of the performance index in the form of the sum of squared errors (SSE). However, unlike the traditional technique, output error is influenced by all simultaneous actions on the system: nonzero inputs and nonzero initial conditions. The full transfer function matrix of the system allows for the treatment of simultaneous actions of the input vector and unknown unpredictable initial conditions. In order to show the improvement caused by the application of a new optimization method that considers nonzero initial conditions, a comparison of PDC controllers designed under zero and nonzero initial conditions is given, where the system in both cases starts from the same nonzero initial conditions, which is often the case in practice. The simulation and experimental results on a DC servo motor are shown to demonstrate the suggested method efficiency

    Networked Fuzzy Predictive Control of Power Buffers for Dynamic Stabilization of DC Microgrids

    Get PDF
    corecore