2,171 research outputs found

    Fundamental Limitations of Disturbance Attenuation in the Presence of Side Information

    Get PDF
    In this paper, we study fundamental limitations of disturbance attenuation of feedback systems, under the assumption that the controller has a finite horizon preview of the disturbance. In contrast with prior work, we extend Bode's integral equation for the case where the preview is made available to the controller via a general, finite capacity, communication system. Under asymptotic stationarity assumptions, our results show that the new fundamental limitation differs from Bode's only by a constant, which quantifies the information rate through the communication system. In the absence of asymptotic stationarity, we derive a universal lower bound which uses Shannon's entropy rate as a measure of performance. By means of a case-study, we show that our main bounds may be achieved

    Fundamental Limitations of Disturbance Attenuation in the Presence of Side Information

    Get PDF
    In this paper, we study fundamental limitations of disturbance attenuation of feedback systems, under the assumption that the controller has a finite horizon preview of the disturbance. In contrast with prior work, we extend Bode’s integral equation for the case where the preview is made available to the controller via a general, finite capacity, communication system. Under asymptotic stationarity assumptions, our results show that the new fundamental limitation differs from Bode’s only by a constant, which quantifies the information rate through the communication system. In the absence of stationarity, we derive a universal lower bound which uses entropy rates as a measure of performance

    Optimal Preview Control for a Class of Linear Continuous Stochastic Control Systems in the Infinite Horizon

    Get PDF
    Copyright © 2016 Jiang Wu et al.This paper discusses the optimal preview control problem for a class of linear continuous stochastic control systems in the infinite horizon, based on the augmented error system method. Firstly, an assistant system is designed and the state equation is translated to the assistant system. Then, an integrator is introduced to construct a stochastic augmented error system. As a result, the tracking problem is converted to a regulation problem. Secondly, the optimal regulator is solved based on dynamic programming principle for the stochastic system, and the optimal preview controller of the original system is obtained. Compared with the finite horizon, we simplify the performance index. We also study the stability of the stochastic augmented error system and design the observer for the original stochastic system. Finally, the simulation example shows the effectiveness of the conclusion in this paper

    Non-linear predictive control for manufacturing and robotic applications

    Get PDF
    The paper discusses predictive control algorithms in the context of applications to robotics and manufacturing systems. Special features of such systems, as compared to traditional process control applications, require that the algorithms are capable of dealing with faster dynamics, more significant unstabilities and more significant contribution of non-linearities to the system performance. The paper presents the general framework for state-space design of predictive algorithms. Linear algorithms are introduced first, then, the attention moves to non-linear systems. Methods of predictive control are presented which are based on the state-dependent state space system description. Those are illustrated on examples of rather difficult mechanical systems

    Simultaneous Suspension Control and Energy Harvesting through Novel Design and Control of a New Nonlinear Energy Harvesting Shock Absorber

    Full text link
    Simultaneous vibration control and energy harvesting of vehicle suspensions have attracted significant research attention over the past decades. However, existing energy harvesting shock absorbers (EHSAs) are mainly designed based on the principle of linear resonance, thereby compromising suspension performance for high-efficiency energy harvesting and being only responsive to narrow bandwidth vibrations. In this paper, we propose a new EHSA design -- inerter pendulum vibration absorber (IPVA) -- that integrates an electromagnetic rotary EHSA with a nonlinear pendulum vibration absorber. We show that this design simultaneously improves ride comfort and energy harvesting efficiency by exploiting the nonlinear effects of pendulum inertia. To further improve the performance, we develop a novel stochastic linearization model predictive control (SL-MPC) approach in which we employ stochastic linearization to approximate the nonlinear dynamics of EHSA that has superior accuracy compared to standard linearization. In particular, we develop a new stochastic linearization method with guaranteed stabilizability, which is a prerequisite for control designs. This leads to an MPC problem that is much more computationally efficient than the nonlinear MPC counterpart with no major performance degradation. Extensive simulations are performed to show the superiority of the proposed new nonlinear EHSA and to demonstrate the efficacy of the proposed SL-MPC

    Magnetic Actuators and Suspension for Space Vibration Control

    Get PDF
    The research on microgravity vibration isolation performed at the University of Virginia is summarized. This research on microgravity vibration isolation was focused in three areas: (1) the development of new actuators for use in microgravity isolation; (2) the design of controllers for multiple-degree-of-freedom active isolation; and (3) the construction of a single-degree-of-freedom test rig with umbilicals. Described are the design and testing of a large stroke linear actuator; the conceptual design and analysis of a redundant coarse-fine six-degree-of-freedom actuator; an investigation of the control issues of active microgravity isolation; a methodology for the design of multiple-degree-of-freedom isolation control systems using modern control theory; and the design and testing of a single-degree-of-freedom test rig with umbilicals

    Discrete-time optimal preview control

    No full text
    There are many situations in which one can preview future reference signals, or future disturbances. Optimal Preview Control is concerned with designing controllers which use this preview to improve closed-loop performance. In this thesis a general preview control problem is presented which includes previewable disturbances, dynamic weighting functions, output feedback and nonpreviewable disturbances. It is then shown how a variety of problems may be cast as special cases of this general problem; of particular interest is the robust preview tracking problem and the problem of disturbance rejection with uncertainty in the previewed signal. . (', The general preview problem is solved in both the Fh and Beo settings. The H2 solution is a relatively straightforward extension ofpreviously known results, however, our contribution is to provide a single framework that may be used as a reference work when tackling a variety of preview problems. We also provide some new analysis concerning the maximum possible reduction in closed-loop H2 norm which accrues from the addition of preview action. / Name of candidate: Title of thesis: I DESCRIPTION OF THESIS Andrew Hazell Discrete-Time Optimal Preview Control The solution to the Hoo problem involves a completely new approach to Hoo preview control, in which the structure of the associated Riccati equation is exploited in order to find an efficient algorithm for computing the optimal controller. The problem tackled here is also more generic than those previously appearing in the literature. The above theory finds obvious applications in the design of controllers for autonomous vehicles, however, a particular class of nonlinearities found in typical vehicle models presents additional problems. The final chapters are concerned with a generic framework for implementing vehicle preview controllers, and also a'case study on preview control of a bicycle.Imperial Users onl
    corecore