4,859 research outputs found

    PNEUMATICALLY ACTUATED ACTIVE SUSPENSION SYSTEM FOR REDUCING VEHICLE DIVE AND SQUAT

    Get PDF
    This manuscript provides a detailed derivation of a full vehicle model, which may be used to simulate the behavior of a vehicle in longitudinal direction. The dynamics of a 14 degrees of freedom (14- DOF) vehicle model is derived and integrated with an analytical tire dynamics namely Calspan tire model. The full vehicle model is then validated experimentally with an instrumented experimental vehicle based on the driver input from brake or throttle. Several transient handling tests are performed, including sudden acceleration test and sudden braking test at constant speed. Comparisons of the experimental result and model response with sudden braking and throttling imposed motion are made. The results of model validation showed that the trends between simulation results and experimental data are almost similar with acceptable error. An active suspension control system is developed on the validated full vehicle model to reduce unwanted vehicle motions during braking and throttling maneuver. A proportional-integral-derivative (PID) scheme integrated with pitch moment rejection loop is proposed to control the system. In presented scheme the result verify improved performance of the proposed control structure during braking and throttling maneuvers compared to the passive vehicle system. It can also be noted that the additional pitch moment rejection loop is able to further improve the performance of the PID controller for the system. The proposed controller will be used to investigate the benefits of a pneumatically actuated active suspension system for reducing unwanted vehicle motion in longitudinal direction

    Modern digital flight control system design for VTOL aircraft

    Get PDF
    Methods for and results from the design and evaluation of a digital flight control system (DFCS) for a CH-47B helicopter are presented. The DFCS employed proportional-integral control logic to provide rapid, precise response to automatic or manual guidance commands while following conventional or spiral-descent approach paths. It contained altitude- and velocity-command modes, and it adapted to varying flight conditions through gain scheduling. Extensive use was made of linear systems analysis techniques. The DFCS was designed, using linear-optimal estimation and control theory, and the effects of gain scheduling are assessed by examination of closed-loop eigenvalues and time responses

    Optimal Electric Vehicle Charging Strategy with Markov Decision Process and Reinforcement Learning Technique

    Get PDF

    Control of Systems with Limited Capacity

    Get PDF
    Virtually all real life systems are such that they present some kind of limitation on one or many of its variables, physical quantities. These systems are designated in this thesis as systems with limited capacity. This work is treating control related problems of a subclass of such systems, where the limitation is a critical factor. The thesis is composed of four parts. The first part is treating the control of tire slip in a braking car. The Anti-lock Braking System (ABS) is an important component of a complex steering system for the modern car. In the latest generation of brake-by-wire systems, the controllers have to maintain a specified tire slip for each wheel during braking. This thesis proposes a design model and based on that a hybrid controller that regulates the tire-slip. Simulation and results from drive tests are presented. In the second part, a design method for robust PID controllers is presented for a class of systems with limited capacity. Robustness is ensured with respect to a cone bounded static nonlinearity acting on the plant. Additional constraints on maximum sensitivity are also considered. The design procedure has been successfully applied in the synthesis of the proposed ABS controller. The third part studies the trajectory convergence for a general class of nonlinear systems. The servo problem for piecewise linear systems is presented. Convex optimization is used to describe the behavior of system trajectories of a piecewise linear system with respect to some input signals. The obtained results are then applied for the study of anti-windup compensators. The last part of the thesis is treating the problem of voltage stability in power systems. Voltage at the load end of a power system has to be controlled within prescribed tolerances. In case of emergencies such as sudden line failures, this task ca n be very challenging. The main contribution of this chapter is a method for improving the stability properties of the power system by dynamic compensation of the reference load voltage. Moreover, a complete compensation scheme is proposed where load shedding is the secondary control variable. This control scheme is shown to stabilize different power system models

    Design, test, and evaluation of three active flutter suppression controllers

    Get PDF
    Three control law design techniques for flutter suppression are presented. Each technique uses multiple control surfaces and/or sensors. The first method uses traditional tools (such as pole/zero loci and Nyquist diagrams) for producing a controller that has minimal complexity and which is sufficiently robust to handle plant uncertainty. The second procedure uses linear combinations of several accelerometer signals and dynamic compensation to synthesize the model rate of the critical mode for feedback to the distributed control surfaces. The third technique starts with a minimum-energy linear quadratic Gaussian controller, iteratively modifies intensity matrices corresponding to input and output noise, and applies controller order reduction to achieve a low-order, robust controller. The resulting designs were implemented digitally and tested subsonically on the active flexible wing wind-tunnel model in the Langley Transonic Dynamics Tunnel. Only the traditional pole/zero loci design was sufficiently robust to errors in the nominal plant to successfully suppress flutter during the test. The traditional pole/zero loci design provided simultaneous suppression of symmetric and antisymmetric flutter with a 24-percent increase in attainable dynamic pressure. Posttest analyses are shown which illustrate the problems encountered with the other laws
    • …
    corecore