13,027 research outputs found

    Supervised learning with hybrid global optimisation methods

    Get PDF

    Searching for Authoritative Documents in Knowledge-Base Communities

    Get PDF
    Knowledge-based communities are popular Web-based tools that allow members to share and seek knowledge globally. However, research on how to search effectively within such knowledge repositories is scant. In this paper we study the problem of finding authoritative documents for user queries within a knowledge-based community. Unlike prior research on the ranking function design which considers only content or hyperlink information, we leverage the social network information embedded in the rich social media, in addition to content, to design novel ranking strategies. Using the Knowledge Adoption Model as the guiding theoretical framework, we design features that gauge the two major factors affecting users’ knowledge adoption decisions: argument quality (AQ) and source credibility (SC). We design two ranking strategies that blend these two sources of evidence with the content-based relevance judgment. A preliminary study using a real world knowledge-based community showed that both AQ and SC features improved search effectiveness

    Knowledge, understanding and the dynamics of medical innovation

    Get PDF
    This paper investigates the processes by which scientific knowledge is created and legitimized. It focuses on scientific developments in a branch of medicine and explores the pathways through which the growth of knowledge enables advances in medical science and in clinical practice. This work draws conceptually on evolutionary approaches to technological change. The empirical part presents a longitudinal analysis of a database of scientific publications in the field of ophthalmology over a period of 50 years. Such an exercise allows us to identify pathways of shared understanding on a disease area, and to map out distinctive trajectories followed by the ophthalmology research community. The paper also contributes to general understanding of the innovation process by supporting the notion that knowledge coordination is a distributed process that cuts across and connects complementary areas of expertise.

    The Characterization of Alzheimer’s Disease and the Development of Early Detection Paradigms: Insights from Nosology, Biomarkers and Machine Learning

    Get PDF
    Alzheimer’s Disease (AD) is the only condition in the top ten leading causes of death for which we do not have an effective treatment that prevents, slows, or stops its progression. Our ability to design useful interventions relies on (a) increasing our understanding of the pathological process of AD and (b) improving our ability for its early detection. These goals are impeded by our current reliance on the clinical symptoms of AD for its diagnosis. This characterizations of AD often falsely assumes a unified, underlying AD-specific pathology for similar presentations of dementia that leads to inconsistent diagnoses. It also hinges on postmortem verification, and so is not a helpful method for identifying patients and research subjects in the beginning phases of the pathophysiological process. Instead, a new biomarker-based approach provides a more biological understanding of the disease and can detect pathological changes up to 20 years before the clinical symptoms emerge. Subjects are assigned a profile according to their biomarker measures of amyloidosis (A), tauopathy (T) and neurodegeneration (N) that reflects their underlying pathology in vivo. AD is confirmed as the underlying pathology when subjects have abnormal values of both amyloid and tauopathy biomarkers, and so have a biomarker profile of A+T+(N)- or A+T+(N)+. This new biomarker based characterization of AD can be combined with machine learning techniques in multimodal classification studies to shed light on the elements of the AD pathological process and develop early detection paradigms. A guiding research framework is proposed for the development of reliable, biologically-valid and interpretable multimodal classification models

    Privacy and Accountability in Black-Box Medicine

    Get PDF
    Black-box medicine—the use of big data and sophisticated machine learning techniques for health-care applications—could be the future of personalized medicine. Black-box medicine promises to make it easier to diagnose rare diseases and conditions, identify the most promising treatments, and allocate scarce resources among different patients. But to succeed, it must overcome two separate, but related, problems: patient privacy and algorithmic accountability. Privacy is a problem because researchers need access to huge amounts of patient health information to generate useful medical predictions. And accountability is a problem because black-box algorithms must be verified by outsiders to ensure they are accurate and unbiased, but this means giving outsiders access to this health information. This article examines the tension between the twin goals of privacy and accountability and develops a framework for balancing that tension. It proposes three pillars for an effective system of privacy-preserving accountability: substantive limitations on the collection, use, and disclosure of patient information; independent gatekeepers regulating information sharing between those developing and verifying black-box algorithms; and information-security requirements to prevent unintentional disclosures of patient information. The article examines and draws on a similar debate in the field of clinical trials, where disclosing information from past trials can lead to new treatments but also threatens patient privacy

    Towards adaptive multi-robot systems: self-organization and self-adaptation

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.The development of complex systems ensembles that operate in uncertain environments is a major challenge. The reason for this is that system designers are not able to fully specify the system during specification and development and before it is being deployed. Natural swarm systems enjoy similar characteristics, yet, being self-adaptive and being able to self-organize, these systems show beneficial emergent behaviour. Similar concepts can be extremely helpful for artificial systems, especially when it comes to multi-robot scenarios, which require such solution in order to be applicable to highly uncertain real world application. In this article, we present a comprehensive overview over state-of-the-art solutions in emergent systems, self-organization, self-adaptation, and robotics. We discuss these approaches in the light of a framework for multi-robot systems and identify similarities, differences missing links and open gaps that have to be addressed in order to make this framework possible
    • …
    corecore