405 research outputs found

    Internetworking: an analysis and proposal

    Get PDF
    As the number of computer networks has grown, so has the desire for users on these networks to communicate with each other, thus the need for internetworking. Unfortunately, many of these networks were not designed with internetworking capabilities in mind. The internetworking facilities offered by a typical network range from non-existent to state of the art. Two major efforts towards internetworking are the DARPA Internet protocols and the OSI Internetworking protocols. The goals of this thesis are to acquaint the reader with the qualities which are desired in an internetworking scheme, to describe how internetworking is accomplished currently, and how these protocols might be modified to better suit the needs of the internetwork user. To this end, this thesis will develop the functional requirements for an ideal internetwork, describe two current methods for internetworking, and analyze these methods against the ideal internetwork. The advantages and disadvantages of each internetworking method will be discussed. After this analysis, suggestions will be made as to how these internetworking schemes could more closely resemble the ideal internetwork

    OSI in the NASA science internet: An analysis

    Get PDF
    The Open Systems Interconnection (OSI) protocol suite is a result of a world-wide effort to develop international standards for networking. OSI is formalized through the International Organization for Standardization (ISO) and the International Electrotechnical Commission (IEC). The goal of OSI is to provide interoperability between network products without relying on one particular vendor, and to do so on a multinational basis. The National Institute for Standards and Technology (NIST) has developed a Government OSI Profile (GOSIP) that specified a subset of the OSI protocols as a Federal Information Processing Standard (FIPS 146). GOSIP compatibility has been adopted as the direction for all U.S. government networks. OSI is extremely diverse, and therefore adherence to a profile will facilitate interoperability within OSI networks. All major computer vendors have indicated current or future support of GOSIP-compliant OSI protocols in their products. The NASA Science Internet (NSI) is an operational network, serving user requirements under NASA's Office of Space Science and Applications. NSI consists of the Space Physics Analysis Network (SPAN) that uses the DECnet protocols and the NASA Science Network (NSN) that uses TCP/IP protocols. The NSI Project Office is currently working on an OSI integration analysis and strategy. A long-term goal is to integrate SPAN and NSN into one unified network service, using a full OSI protocol suite, which will support the OSSA user community

    Interfacing IEC 61850-9-2 Process Bus Data to a Simulation Environment

    Get PDF
    IEC 61850 – Communication and networks in substations is the standard for building communication infrastructure between the different Intelligent Electronic devices (IEDs) in the substation automation system. It consists of several parts which include Specific Communication and Service Mapping for the transmission of sampled values (defined in part 9–2 of the standard). The Sampled value communication is a high speed, time critical Ethernet based communication for the transfer of data over the network. It defines the sampling rate and time synchronization requirement of the system. The main purpose of this thesis is to extract sampled value data (four voltages, four currents) from a PCAP data file captured over the network in the ‘Sundom Smart Grid’ environment and convert the data into the format needed for analysis on PSCAD simulation tool. This thesis serves as an interface between the real Smart Grid environment and the test environment in the University of Vaasa. This thesis explains fundamental concepts that relate to IEC 61850, and the Sampled Value in particular. It describes the frame structure of sampled value and a software application has been developed based on WinPcap Application Program Interface (API) to extract the data points needed and fulfill the data format requirement of the PSCAD which is adaptable for use in MATLAB.fi=OpinnĂ€ytetyö kokotekstinĂ€ PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=LĂ€rdomsprov tillgĂ€ngligt som fulltext i PDF-format

    Prospects for Internet technology

    Get PDF
    This paper surveys the current developments in Internet technology, with a particular emphasis on performance, and the growing need for various guarantees of quality of service. It discusses hardware technologies for increased bandwidth, mechanisms for requesting and providing specific qualities of service, and various scaling issues. Fi-nally it discusses mechanisms needed for (but not the economics of) the Internet in the mass market. To this end, we survey changes in the areas of addressing, and flow management. 1

    Unicast UDP Usage Guidelines for Application Designers

    Get PDF
    Publisher PD

    Rationale, Scenarios, and Profiles for the Application of the Internet Protocol Suite (IPS) in Space Operations

    Get PDF
    This greenbook captures some of the current, planned and possible future uses of the Internet Protocol (IP) as part of Space Operations. It attempts to describe how the Internet Protocol is used in specific scenarios. Of primary focus is low-earth-orbit space operations, which is referred to here as the design reference mission (DRM). This is because most of the program experience drawn upon derives from this type of mission. Application profiles are provided. This includes parameter settings programs have proposed for sending IP datagrams over CCSDS links, the minimal subsets and features of the IP protocol suite and applications expected for interoperability between projects, and the configuration, operations and maintenance of these IP functions. Of special interest is capturing the lessons learned from the Constellation Program in this area, since that program included a fairly ambitious use of the Internet Protocol

    IP and ATM integration: A New paradigm in multi-service internetworking

    Get PDF
    ATM is a widespread technology adopted by many to support advanced data communication, in particular efficient Internet services provision. The expected challenges of multimedia communication together with the increasing massive utilization of IP-based applications urgently require redesign of networking solutions in terms of both new functionalities and enhanced performance. However, the networking context is affected by so many changes, and to some extent chaotic growth, that any approach based on a structured and complex top-down architecture is unlikely to be applicable. Instead, an approach based on finding out the best match between realistic service requirements and the pragmatic, intelligent use of technical opportunities made available by the product market seems more appropriate. By following this approach, innovations and improvements can be introduced at different times, not necessarily complying with each other according to a coherent overall design. With the aim of pursuing feasible innovations in the different networking aspects, we look at both IP and ATM internetworking in order to investigating a few of the most crucial topics/ issues related to the IP and ATM integration perspective. This research would also address various means of internetworking the Internet Protocol (IP) and Asynchronous Transfer Mode (ATM) with an objective of identifying the best possible means of delivering Quality of Service (QoS) requirements for multi-service applications, exploiting the meritorious features that IP and ATM have to offer. Although IP and ATM often have been viewed as competitors, their complementary strengths and limitations from a natural alliance that combines the best aspects of both the technologies. For instance, one limitation of ATM networks has been the relatively large gap between the speed of the network paths and the control operations needed to configure those data paths to meet changing user needs. IP\u27s greatest strength, on the other hand, is the inherent flexibility and its capacity to adapt rapidly to changing conditions. These complementary strengths and limitations make it natural to combine IP with ATM to obtain the best that each has to offer. Over time many models and architectures have evolved for IP/ATM internetworking and they have impacted the fundamental thinking in internetworking IP and ATM. These technologies, architectures, models and implementations will be reviewed in greater detail in addressing possible issues in integrating these architectures s in a multi-service, enterprise network. The objective being to make recommendations as to the best means of interworking the two in exploiting the salient features of one another to provide a faster, reliable, scalable, robust, QoS aware network in the most economical manner. How IP will be carried over ATM when a commercial worldwide ATM network is deployed is not addressed and the details of such a network still remain in a state of flux to specify anything concrete. Our research findings culminated with a strong recommendation that the best model to adopt, in light of the impending integrated service requirements of future multi-service environments, is an ATM core with IP at the edges to realize the best of both technologies in delivering QoS guarantees in a seamless manner to any node in the enterprise

    Mobile KNX: Design, development and analysis of a mobile network bridge for Domotic systems

    Get PDF
    In the last few years, the need to easily control the electrical devices has been manifested with more persistence. This is due to the increasing of energy consumption and the introduction of new concepts, such as green homes and building automation systems. To find a solution to this demand, several companies have focused on the development of infrastructure for remote management system of automation building applications. Based on well-defined protocols and systems for automation building structures, in the current market there are several applications that permit to clients to meet this request. However, it is still possible to improve their quality pushing on automation. Therefore, a central system for automatically processing and sharing the configuration data has been developed, leaving to mobile devices only the task to render it, in order to allow a client to control all the “smart” devices in an automation building system. This project has focused on developing an application that would provide a system of transaction between mobile and automation building world. In addition, a mobile application has been developed for several mobile operating systems and architectures. The work was completed with a testing phase, without the use of simulators, focused on ease of use and speed of access to its devices, which has shown the validity of this idea. The results obtained have given a new set of real data on which basing future developments and also a basis for a different approach to the proble
    • 

    corecore