10,121 research outputs found

    Continuous maintenance and the future – Foundations and technological challenges

    Get PDF
    High value and long life products require continuous maintenance throughout their life cycle to achieve required performance with optimum through-life cost. This paper presents foundations and technologies required to offer the maintenance service. Component and system level degradation science, assessment and modelling along with life cycle ‘big data’ analytics are the two most important knowledge and skill base required for the continuous maintenance. Advanced computing and visualisation technologies will improve efficiency of the maintenance and reduce through-life cost of the product. Future of continuous maintenance within the Industry 4.0 context also identifies the role of IoT, standards and cyber security

    Big data analytics:Computational intelligence techniques and application areas

    Get PDF
    Big Data has significant impact in developing functional smart cities and supporting modern societies. In this paper, we investigate the importance of Big Data in modern life and economy, and discuss challenges arising from Big Data utilization. Different computational intelligence techniques have been considered as tools for Big Data analytics. We also explore the powerful combination of Big Data and Computational Intelligence (CI) and identify a number of areas, where novel applications in real world smart city problems can be developed by utilizing these powerful tools and techniques. We present a case study for intelligent transportation in the context of a smart city, and a novel data modelling methodology based on a biologically inspired universal generative modelling approach called Hierarchical Spatial-Temporal State Machine (HSTSM). We further discuss various implications of policy, protection, valuation and commercialization related to Big Data, its applications and deployment

    The potential of additive manufacturing in the smart factory industrial 4.0: A review

    Get PDF
    Additive manufacturing (AM) or three-dimensional (3D) printing has introduced a novel production method in design, manufacturing, and distribution to end-users. This technology has provided great freedom in design for creating complex components, highly customizable products, and efficient waste minimization. The last industrial revolution, namely industry 4.0, employs the integration of smart manufacturing systems and developed information technologies. Accordingly, AM plays a principal role in industry 4.0 thanks to numerous benefits, such as time and material saving, rapid prototyping, high efficiency, and decentralized production methods. This review paper is to organize a comprehensive study on AM technology and present the latest achievements and industrial applications. Besides that, this paper investigates the sustainability dimensions of the AM process and the added values in economic, social, and environment sections. Finally, the paper concludes by pointing out the future trend of AM in technology, applications, and materials aspects that have the potential to come up with new ideas for the future of AM explorations

    Frameworks for data-driven quality management in cyber-physical systems for manufacturing: A systematic review

    Get PDF
    Recent advances in the manufacturing industry have enabled the deployment of Cyber-Physical Systems (CPS) at scale. By utilizing advanced analytics, data from production can be analyzed and used to monitor and improve the process and product quality. Many frameworks for implementing CPS have been developed to structure the relationship between the digital and the physical worlds. However, there is no systematic review of the existing frameworks related to quality management in manufacturing CPS. Thus, our study aims at determining and comparing the existing frameworks. The systematic review yielded 38 frameworks analyzed regarding their characteristics, use of data science and Machine Learning (ML), and shortcomings and open research issues. The identified issues mainly relate to limitations in cross-industry/cross-process applicability, the use of ML, big data handling, and data security.publishedVersio

    A Review of Further Directions for Artificial Intelligence, Machine Learning, and Deep Learning in Smart Logistics

    Get PDF
    Industry 4.0 concepts and technologies ensure the ongoing development of micro- and macro-economic entities by focusing on the principles of interconnectivity, digitalization, and automation. In this context, artificial intelligence is seen as one of the major enablers for Smart Logistics and Smart Production initiatives. This paper systematically analyzes the scientific literature on artificial intelligence, machine learning, and deep learning in the context of Smart Logistics management in industrial enterprises. Furthermore, based on the results of the systematic literature review, the authors present a conceptual framework, which provides fruitful implications based on recent research findings and insights to be used for directing and starting future research initiatives in the field of artificial intelligence (AI), machine learning (ML), and deep learning (DL) in Smart Logistics

    Digital Twins: A Meta-Review on Their Conceptualization, Application, and Reference Architecture

    Get PDF
    The concept of digital twins (DTs) is receiving increasing attention in research and management practice. However, various facets around the concept are blurry, including conceptualization, application areas, and reference architectures for DTs. A review of preliminary results regarding the emerging research output on DTs is required to promote further research and implementation in organizations. To do so, this paper asks four research questions: (1) How is the concept of DTs defined? (2) Which application areas are relevant for the implementation of DTs? (3) How is a reference architecture for DTs conceptualized? and (4) Which directions are relevant for further research on DTs? With regard to research methods, we conduct a meta-review of 14 systematic literature reviews on DTs. The results yield important insights for the current state of conceptualization, application areas, reference architecture, and future research directions on DTs

    Trusted Artificial Intelligence in Manufacturing; Trusted Artificial Intelligence in Manufacturing

    Get PDF
    The successful deployment of AI solutions in manufacturing environments hinges on their security, safety and reliability which becomes more challenging in settings where multiple AI systems (e.g., industrial robots, robotic cells, Deep Neural Networks (DNNs)) interact as atomic systems and with humans. To guarantee the safe and reliable operation of AI systems in the shopfloor, there is a need to address many challenges in the scope of complex, heterogeneous, dynamic and unpredictable environments. Specifically, data reliability, human machine interaction, security, transparency and explainability challenges need to be addressed at the same time. Recent advances in AI research (e.g., in deep neural networks security and explainable AI (XAI) systems), coupled with novel research outcomes in the formal specification and verification of AI systems provide a sound basis for safe and reliable AI deployments in production lines. Moreover, the legal and regulatory dimension of safe and reliable AI solutions in production lines must be considered as well. To address some of the above listed challenges, fifteen European Organizations collaborate in the scope of the STAR project, a research initiative funded by the European Commission in the scope of its H2020 program (Grant Agreement Number: 956573). STAR researches, develops, and validates novel technologies that enable AI systems to acquire knowledge in order to take timely and safe decisions in dynamic and unpredictable environments. Moreover, the project researches and delivers approaches that enable AI systems to confront sophisticated adversaries and to remain robust against security attacks. This book is co-authored by the STAR consortium members and provides a review of technologies, techniques and systems for trusted, ethical, and secure AI in manufacturing. The different chapters of the book cover systems and technologies for industrial data reliability, responsible and transparent artificial intelligence systems, human centered manufacturing systems such as human-centred digital twins, cyber-defence in AI systems, simulated reality systems, human robot collaboration systems, as well as automated mobile robots for manufacturing environments. A variety of cutting-edge AI technologies are employed by these systems including deep neural networks, reinforcement learning systems, and explainable artificial intelligence systems. Furthermore, relevant standards and applicable regulations are discussed. Beyond reviewing state of the art standards and technologies, the book illustrates how the STAR research goes beyond the state of the art, towards enabling and showcasing human-centred technologies in production lines. Emphasis is put on dynamic human in the loop scenarios, where ethical, transparent, and trusted AI systems co-exist with human workers. The book is made available as an open access publication, which could make it broadly and freely available to the AI and smart manufacturing communities

    Case study: the implementation of a data-driven industrial analytics methodology and platform for smart manufacturing

    Get PDF
    Integrated, real-time and open approaches relating to the development of industrial analytics capabilities are needed to support smart manufacturing. However, adopting industrial analytics can be challenging due to its multidisciplinary and cross-departmental (e.g. Operation and Information Technology) nature. These challenges stem from the significant effort needed to coordinate and manage teams and technologies in a connected enterprise. To address these challenges, this research presents a formal industrial analytics methodology that may be used to inform the development of industrial analytics capabilities. The methodology classifies operational teams that comprise the industrial analytics ecosystem, and presents a technology agnostic reference architecture to facilitate the industrial analytics lifecycle. Finally, the proposed methodology is demonstrated in a case study, where an industrial analytics platform is used to identify an operational issue in a largescale Air Handling Unit (AHU)

    An Industrial Data Analysis and Supervision Framework for Predictive Manufacturing Systems

    Get PDF
    Due to the advancements in the Information and Communication Technologies field in the modern interconnected world, the manufacturing industry is becoming a more and more data rich environment, with large volumes of data being generated on a daily basis, thus presenting a new set of opportunities to be explored towards improving the efficiency and quality of production processes. This can be done through the development of the so called Predictive Manufacturing Systems. These systems aim to improve manufacturing processes through a combination of concepts such as Cyber-Physical Production Systems, Machine Learning and real-time Data Analytics in order to predict future states and events in production. This can be used in a wide array of applications, including predictive maintenance policies, improving quality control through the early detection of faults and defects or optimize energy consumption, to name a few. Therefore, the research efforts presented in this document focus on the design and development of a generic framework to guide the implementation of predictive manufacturing systems through a set of common requirements and components. This approach aims to enable manufacturers to extract, analyse, interpret and transform their data into actionable knowledge that can be leveraged into a business advantage. To this end a list of goals, functional and non-functional requirements is defined for these systems based on a thorough literature review and empirical knowledge. Subsequently the Intelligent Data Analysis and Real-Time Supervision (IDARTS) framework is proposed, along with a detailed description of each of its main components. Finally, a pilot implementation is presented for each of this components, followed by the demonstration of the proposed framework in three different scenarios including several use cases in varied real-world industrial areas. In this way the proposed work aims to provide a common foundation for the full realization of Predictive Manufacturing Systems

    An Exploratory Study of Patient Falls

    Get PDF
    Debate continues between the contribution of education level and clinical expertise in the nursing practice environment. Research suggests a link between Baccalaureate of Science in Nursing (BSN) nurses and positive patient outcomes such as lower mortality, decreased falls, and fewer medication errors. Purpose: To examine if there a negative correlation between patient falls and the level of nurse education at an urban hospital located in Midwest Illinois during the years 2010-2014? Methods: A retrospective crosssectional cohort analysis was conducted using data from the National Database of Nursing Quality Indicators (NDNQI) from the years 2010-2014. Sample: Inpatients aged ≥ 18 years who experienced a unintentional sudden descent, with or without injury that resulted in the patient striking the floor or object and occurred on inpatient nursing units. Results: The regression model was constructed with annual patient falls as the dependent variable and formal education and a log transformed variable for percentage of certified nurses as the independent variables. The model overall is a good fit, F (2,22) = 9.014, p = .001, adj. R2 = .40. Conclusion: Annual patient falls will decrease by increasing the number of nurses with baccalaureate degrees and/or certifications from a professional nursing board-governing body
    corecore