51,220 research outputs found

    Fast and Efficient Zero-Learning Image Fusion

    Full text link
    We propose a real-time image fusion method using pre-trained neural networks. Our method generates a single image containing features from multiple sources. We first decompose images into a base layer representing large scale intensity variations, and a detail layer containing small scale changes. We use visual saliency to fuse the base layers, and deep feature maps extracted from a pre-trained neural network to fuse the detail layers. We conduct ablation studies to analyze our method's parameters such as decomposition filters, weight construction methods, and network depth and architecture. Then, we validate its effectiveness and speed on thermal, medical, and multi-focus fusion. We also apply it to multiple image inputs such as multi-exposure sequences. The experimental results demonstrate that our technique achieves state-of-the-art performance in visual quality, objective assessment, and runtime efficiency.Comment: 13 pages, 10 figure

    VERIFAI: A Toolkit for the Design and Analysis of Artificial Intelligence-Based Systems

    Full text link
    We present VERIFAI, a software toolkit for the formal design and analysis of systems that include artificial intelligence (AI) and machine learning (ML) components. VERIFAI particularly seeks to address challenges with applying formal methods to perception and ML components, including those based on neural networks, and to model and analyze system behavior in the presence of environment uncertainty. We describe the initial version of VERIFAI which centers on simulation guided by formal models and specifications. Several use cases are illustrated with examples, including temporal-logic falsification, model-based systematic fuzz testing, parameter synthesis, counterexample analysis, and data set augmentation

    Adaptive O-CNN: A Patch-based Deep Representation of 3D Shapes

    Full text link
    We present an Adaptive Octree-based Convolutional Neural Network (Adaptive O-CNN) for efficient 3D shape encoding and decoding. Different from volumetric-based or octree-based CNN methods that represent a 3D shape with voxels in the same resolution, our method represents a 3D shape adaptively with octants at different levels and models the 3D shape within each octant with a planar patch. Based on this adaptive patch-based representation, we propose an Adaptive O-CNN encoder and decoder for encoding and decoding 3D shapes. The Adaptive O-CNN encoder takes the planar patch normal and displacement as input and performs 3D convolutions only at the octants at each level, while the Adaptive O-CNN decoder infers the shape occupancy and subdivision status of octants at each level and estimates the best plane normal and displacement for each leaf octant. As a general framework for 3D shape analysis and generation, the Adaptive O-CNN not only reduces the memory and computational cost, but also offers better shape generation capability than the existing 3D-CNN approaches. We validate Adaptive O-CNN in terms of efficiency and effectiveness on different shape analysis and generation tasks, including shape classification, 3D autoencoding, shape prediction from a single image, and shape completion for noisy and incomplete point clouds

    Physics-guided Neural Networks (PGNN): An Application in Lake Temperature Modeling

    Full text link
    This paper introduces a novel framework for combining scientific knowledge of physics-based models with neural networks to advance scientific discovery. This framework, termed as physics-guided neural network (PGNN), leverages the output of physics-based model simulations along with observational features to generate predictions using a neural network architecture. Further, this paper presents a novel framework for using physics-based loss functions in the learning objective of neural networks, to ensure that the model predictions not only show lower errors on the training set but are also scientifically consistent with the known physics on the unlabeled set. We illustrate the effectiveness of PGNN for the problem of lake temperature modeling, where physical relationships between the temperature, density, and depth of water are used to design a physics-based loss function. By using scientific knowledge to guide the construction and learning of neural networks, we are able to show that the proposed framework ensures better generalizability as well as scientific consistency of results.Comment: submitted to ACM SIGKDD 201

    DeepFault: Fault Localization for Deep Neural Networks

    Full text link
    Deep Neural Networks (DNNs) are increasingly deployed in safety-critical applications including autonomous vehicles and medical diagnostics. To reduce the residual risk for unexpected DNN behaviour and provide evidence for their trustworthy operation, DNNs should be thoroughly tested. The DeepFault whitebox DNN testing approach presented in our paper addresses this challenge by employing suspiciousness measures inspired by fault localization to establish the hit spectrum of neurons and identify suspicious neurons whose weights have not been calibrated correctly and thus are considered responsible for inadequate DNN performance. DeepFault also uses a suspiciousness-guided algorithm to synthesize new inputs, from correctly classified inputs, that increase the activation values of suspicious neurons. Our empirical evaluation on several DNN instances trained on MNIST and CIFAR-10 datasets shows that DeepFault is effective in identifying suspicious neurons. Also, the inputs synthesized by DeepFault closely resemble the original inputs, exercise the identified suspicious neurons and are highly adversarial.Comment: 15 page

    Octree guided CNN with Spherical Kernels for 3D Point Clouds

    Full text link
    We propose an octree guided neural network architecture and spherical convolutional kernel for machine learning from arbitrary 3D point clouds. The network architecture capitalizes on the sparse nature of irregular point clouds, and hierarchically coarsens the data representation with space partitioning. At the same time, the proposed spherical kernels systematically quantize point neighborhoods to identify local geometric structures in the data, while maintaining the properties of translation-invariance and asymmetry. We specify spherical kernels with the help of network neurons that in turn are associated with spatial locations. We exploit this association to avert dynamic kernel generation during network training that enables efficient learning with high resolution point clouds. The effectiveness of the proposed technique is established on the benchmark tasks of 3D object classification and segmentation, achieving new state-of-the-art on ShapeNet and RueMonge2014 datasets.Comment: Accepted in IEEE CVPR 2019. arXiv admin note: substantial text overlap with arXiv:1805.0787

    How to Learn a Model Checker

    Full text link
    We show how machine-learning techniques, particularly neural networks, offer a very effective and highly efficient solution to the approximate model-checking problem for continuous and hybrid systems, a solution where the general-purpose model checker is replaced by a model-specific classifier trained by sampling model trajectories. To the best of our knowledge, we are the first to establish this link from machine learning to model checking. Our method comprises a pipeline of analysis techniques for estimating and obtaining statistical guarantees on the classifier's prediction performance, as well as tuning techniques to improve such performance. Our experimental evaluation considers the time-bounded reachability problem for three well-established benchmarks in the hybrid systems community. On these examples, we achieve an accuracy of 99.82% to 100% and a false-negative rate (incorrectly predicting that unsafe states are not reachable from a given state) of 0.0007 to 0. We believe that this level of accuracy is acceptable in many practical applications and we show how the approximate model checker can be made more conservative by tuning the classifier through further training and selection of the classification threshold.Comment: 16 pages, 13 figures, short version submitted to HSCC201

    Towards Proof Synthesis Guided by Neural Machine Translation for Intuitionistic Propositional Logic

    Full text link
    Inspired by the recent evolution of deep neural networks (DNNs) in machine learning, we explore their application to PL-related topics. This paper is the first step towards this goal; we propose a proof-synthesis method for the negation-free propositional logic in which we use a DNN to obtain a guide of proof search. The idea is to view the proof-synthesis problem as a translation from a proposition to its proof. We train seq2seq, which is a popular network in neural machine translation, so that it generates a proof encoded as a λ\lambda-term of a given proposition. We implement the whole framework and empirically observe that a generated proof term is close to a correct proof in terms of the tree edit distance of AST. This observation justifies using the output from a trained seq2seq model as a guide for proof search

    3D Human Body Reconstruction from a Single Image via Volumetric Regression

    Full text link
    This paper proposes the use of an end-to-end Convolutional Neural Network for direct reconstruction of the 3D geometry of humans via volumetric regression. The proposed method does not require the fitting of a shape model and can be trained to work from a variety of input types, whether it be landmarks, images or segmentation masks. Additionally, non-visible parts, either self-occluded or otherwise, are still reconstructed, which is not the case with depth map regression. We present results that show that our method can handle both pose variation and detailed reconstruction given appropriate datasets for training.Comment: Accepted to ECCV Workshops (PeopleCap) 201

    Verification for Machine Learning, Autonomy, and Neural Networks Survey

    Full text link
    This survey presents an overview of verification techniques for autonomous systems, with a focus on safety-critical autonomous cyber-physical systems (CPS) and subcomponents thereof. Autonomy in CPS is enabling by recent advances in artificial intelligence (AI) and machine learning (ML) through approaches such as deep neural networks (DNNs), embedded in so-called learning enabled components (LECs) that accomplish tasks from classification to control. Recently, the formal methods and formal verification community has developed methods to characterize behaviors in these LECs with eventual goals of formally verifying specifications for LECs, and this article presents a survey of many of these recent approaches
    corecore