5,573 research outputs found

    Synchronous Counting and Computational Algorithm Design

    Full text link
    Consider a complete communication network on nn nodes, each of which is a state machine. In synchronous 2-counting, the nodes receive a common clock pulse and they have to agree on which pulses are "odd" and which are "even". We require that the solution is self-stabilising (reaching the correct operation from any initial state) and it tolerates ff Byzantine failures (nodes that send arbitrary misinformation). Prior algorithms are expensive to implement in hardware: they require a source of random bits or a large number of states. This work consists of two parts. In the first part, we use computational techniques (often known as synthesis) to construct very compact deterministic algorithms for the first non-trivial case of f=1f = 1. While no algorithm exists for n<4n < 4, we show that as few as 3 states per node are sufficient for all values n≥4n \ge 4. Moreover, the problem cannot be solved with only 2 states per node for n=4n = 4, but there is a 2-state solution for all values n≥6n \ge 6. In the second part, we develop and compare two different approaches for synthesising synchronous counting algorithms. Both approaches are based on casting the synthesis problem as a propositional satisfiability (SAT) problem and employing modern SAT-solvers. The difference lies in how to solve the SAT problem: either in a direct fashion, or incrementally within a counter-example guided abstraction refinement loop. Empirical results suggest that the former technique is more efficient if we want to synthesise time-optimal algorithms, while the latter technique discovers non-optimal algorithms more quickly.Comment: 35 pages, extended and revised versio

    Sound and Automated Synthesis of Digital Stabilizing Controllers for Continuous Plants

    Get PDF
    Modern control is implemented with digital microcontrollers, embedded within a dynamical plant that represents physical components. We present a new algorithm based on counter-example guided inductive synthesis that automates the design of digital controllers that are correct by construction. The synthesis result is sound with respect to the complete range of approximations, including time discretization, quantization effects, and finite-precision arithmetic and its rounding errors. We have implemented our new algorithm in a tool called DSSynth, and are able to automatically generate stable controllers for a set of intricate plant models taken from the literature within minutes.Comment: 10 page

    Learning Concise Models from Long Execution Traces

    Full text link
    Abstract models of system-level behaviour have applications in design exploration, analysis, testing and verification. We describe a new algorithm for automatically extracting useful models, as automata, from execution traces of a HW/SW system driven by software exercising a use-case of interest. Our algorithm leverages modern program synthesis techniques to generate predicates on automaton edges, succinctly describing system behaviour. It employs trace segmentation to tackle complexity for long traces. We learn concise models capturing transaction-level, system-wide behaviour--experimentally demonstrating the approach using traces from a variety of sources, including the x86 QEMU virtual platform and the Real-Time Linux kernel
    • …
    corecore