6,914 research outputs found

    Dynamic Thermal Imaging for Intraoperative Monitoring of Neuronal Activity and Cortical Perfusion

    Get PDF
    Neurosurgery is a demanding medical discipline that requires a complex interplay of several neuroimaging techniques. This allows structural as well as functional information to be recovered and then visualized to the surgeon. In the case of tumor resections this approach allows more fine-grained differentiation of healthy and pathological tissue which positively influences the postoperative outcome as well as the patient's quality of life. In this work, we will discuss several approaches to establish thermal imaging as a novel neuroimaging technique to primarily visualize neural activity and perfusion state in case of ischaemic stroke. Both applications require novel methods for data-preprocessing, visualization, pattern recognition as well as regression analysis of intraoperative thermal imaging. Online multimodal integration of preoperative and intraoperative data is accomplished by a 2D-3D image registration and image fusion framework with an average accuracy of 2.46 mm. In navigated surgeries, the proposed framework generally provides all necessary tools to project intraoperative 2D imaging data onto preoperative 3D volumetric datasets like 3D MR or CT imaging. Additionally, a fast machine learning framework for the recognition of cortical NaCl rinsings will be discussed throughout this thesis. Hereby, the standardized quantification of tissue perfusion by means of an approximated heating model can be achieved. Classifying the parameters of these models yields a map of connected areas, for which we have shown that these areas correlate with the demarcation caused by an ischaemic stroke segmented in postoperative CT datasets. Finally, a semiparametric regression model has been developed for intraoperative neural activity monitoring of the somatosensory cortex by somatosensory evoked potentials. These results were correlated with neural activity of optical imaging. We found that thermal imaging yields comparable results, yet doesn't share the limitations of optical imaging. In this thesis we would like to emphasize that thermal imaging depicts a novel and valid tool for both intraoperative functional and structural neuroimaging

    Spatially Coherent RANSAC for Multi-Model Fitting

    Get PDF
    RANSAC [15, 38, 1] is a reliable method for fitting parametric models to sparse data with many outliers. Originally designed for extracting a single model, RANSAC also has variants for fitting multiple models when supported by data. Our main insight is that, in practice, inliers for each model are often spatially coherent — all previous RANSAC-based methods ignore this. Our new method fits an unspecified number of models to data by combining ideas of random sampling and spatial regularization. As in basic RANSAC, we randomly sample data points to generate a set of proposed models (labels). We formulate model selection and inlier classification as a single problem — labeling of triangulated data points. Geometric fit errors and spatial coherence are combined in one MRF-based energy. In contrast to basic RANSAC, inlier classification does not depend on a fixed threshold. Moreover, our optimization framework allows iterative re-estimation of models/inliers with a clear stopping criteria and convergence guarantees. We show that our new method, SCO- RANSAC, can significantly improve results on synthetic and real data supporting multiple linear, affine, and homographic models

    Motion adaptation and attention: A critical review and meta-analysis

    Get PDF
    The motion aftereffect (MAE) provides a behavioural probe into the mechanisms underlying motion perception, and has been used to study the effects of attention on motion processing. Visual attention can enhance detection and discrimination of selected visual signals. However, the relationship between attention and motion processing remains contentious: not all studies find that attention increases MAEs. Our meta-analysis reveals several factors that explain superficially discrepant findings. Across studies (37 independent samples, 76 effects) motion adaptation was significantly and substantially enhanced by attention (Cohen's d = 1.12, p < .0001). The effect more than doubled when adapting to translating (vs. expanding or rotating) motion. Other factors affecting the attention-MAE relationship included stimulus size, eccentricity and speed. By considering these behavioural analyses alongside neurophysiological work, we conclude that feature-based (rather than spatial, or object-based) attention is the biggest driver of sensory adaptation. Comparisons between naïve and non-naïve observers, different response paradigms, and assessment of 'file-drawer effects' indicate that neither response bias nor publication bias are likely to have significantly inflated the estimated effect of attention

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201
    corecore