435 research outputs found

    Adapting the Neural Encoder-Decoder Framework from Single to Multi-Document Summarization

    Full text link
    Generating a text abstract from a set of documents remains a challenging task. The neural encoder-decoder framework has recently been exploited to summarize single documents, but its success can in part be attributed to the availability of large parallel data automatically acquired from the Web. In contrast, parallel data for multi-document summarization are scarce and costly to obtain. There is a pressing need to adapt an encoder-decoder model trained on single-document summarization data to work with multiple-document input. In this paper, we present an initial investigation into a novel adaptation method. It exploits the maximal marginal relevance method to select representative sentences from multi-document input, and leverages an abstractive encoder-decoder model to fuse disparate sentences to an abstractive summary. The adaptation method is robust and itself requires no training data. Our system compares favorably to state-of-the-art extractive and abstractive approaches judged by automatic metrics and human assessors.Comment: 11 page

    Deep Recurrent Generative Decoder for Abstractive Text Summarization

    Full text link
    We propose a new framework for abstractive text summarization based on a sequence-to-sequence oriented encoder-decoder model equipped with a deep recurrent generative decoder (DRGN). Latent structure information implied in the target summaries is learned based on a recurrent latent random model for improving the summarization quality. Neural variational inference is employed to address the intractable posterior inference for the recurrent latent variables. Abstractive summaries are generated based on both the generative latent variables and the discriminative deterministic states. Extensive experiments on some benchmark datasets in different languages show that DRGN achieves improvements over the state-of-the-art methods.Comment: 10 pages, EMNLP 201

    Domain transfer for deep natural language generation from abstract meaning representations

    Get PDF
    Stochastic natural language generation systems that are trained from labelled datasets are often domainspecific in their annotation and in their mapping from semantic input representations to lexical-syntactic outputs. As a result, learnt models fail to generalize across domains, heavily restricting their usability beyond single applications. In this article, we focus on the problem of domain adaptation for natural language generation. We show how linguistic knowledge from a source domain, for which labelled data is available, can be adapted to a target domain by reusing training data across domains. As a key to this, we propose to employ abstract meaning representations as a common semantic representation across domains. We model natural language generation as a long short-term memory recurrent neural network encoderdecoder, in which one recurrent neural network learns a latent representation of a semantic input, and a second recurrent neural network learns to decode it to a sequence of words. We show that the learnt representations can be transferred across domains and can be leveraged effectively to improve training on new unseen domains. Experiments in three different domains and with six datasets demonstrate that the lexical-syntactic constructions learnt in one domain can be transferred to new domains and achieve up to 75-100% of the performance of in-domain training. This is based on objective metrics such as BLEU and semantic error rate and a subjective human rating study. Training a policy from prior knowledge from a different domain is consistently better than pure in-domain training by up to 10%

    A Novel ILP Framework for Summarizing Content with High Lexical Variety

    Full text link
    Summarizing content contributed by individuals can be challenging, because people make different lexical choices even when describing the same events. However, there remains a significant need to summarize such content. Examples include the student responses to post-class reflective questions, product reviews, and news articles published by different news agencies related to the same events. High lexical diversity of these documents hinders the system's ability to effectively identify salient content and reduce summary redundancy. In this paper, we overcome this issue by introducing an integer linear programming-based summarization framework. It incorporates a low-rank approximation to the sentence-word co-occurrence matrix to intrinsically group semantically-similar lexical items. We conduct extensive experiments on datasets of student responses, product reviews, and news documents. Our approach compares favorably to a number of extractive baselines as well as a neural abstractive summarization system. The paper finally sheds light on when and why the proposed framework is effective at summarizing content with high lexical variety.Comment: Accepted for publication in the journal of Natural Language Engineering, 201
    • …
    corecore