2,947 research outputs found

    Distributed Subweb Specifications for Traversing the Web

    Full text link
    Link Traversal-based Query Processing (ltqp), in which a sparql query is evaluated over a web of documents rather than a single dataset, is often seen as a theoretically interesting yet impractical technique. However, in a time where the hypercentralization of data has increasingly come under scrutiny, a decentralized Web of Data with a simple document-based interface is appealing, as it enables data publishers to control their data and access rights. While ltqp allows evaluating complex queries over such webs, it suffers from performance issues (due to the high number of documents containing data) as well as information quality concerns (due to the many sources providing such documents). In existing ltqp approaches, the burden of finding sources to query is entirely in the hands of the data consumer. In this paper, we argue that to solve these issues, data publishers should also be able to suggest sources of interest and guide the data consumer towards relevant and trustworthy data. We introduce a theoretical framework that enables such guided link traversal and study its properties. We illustrate with a theoretic example that this can improve query results and reduce the number of network requests. We evaluate our proposal experimentally on a virtual linked web with specifications and indeed observe that not just the data quality but also the efficiency of querying improves. Under consideration in Theory and Practice of Logic Programming (TPLP).Comment: Under consideration in Theory and Practice of Logic Programming (TPLP

    Any-k: Anytime Top-k Tree Pattern Retrieval in Labeled Graphs

    Full text link
    Many problems in areas as diverse as recommendation systems, social network analysis, semantic search, and distributed root cause analysis can be modeled as pattern search on labeled graphs (also called "heterogeneous information networks" or HINs). Given a large graph and a query pattern with node and edge label constraints, a fundamental challenge is to nd the top-k matches ac- cording to a ranking function over edge and node weights. For users, it is di cult to select value k . We therefore propose the novel notion of an any-k ranking algorithm: for a given time budget, re- turn as many of the top-ranked results as possible. Then, given additional time, produce the next lower-ranked results quickly as well. It can be stopped anytime, but may have to continues until all results are returned. This paper focuses on acyclic patterns over arbitrary labeled graphs. We are interested in practical algorithms that effectively exploit (1) properties of heterogeneous networks, in particular selective constraints on labels, and (2) that the users often explore only a fraction of the top-ranked results. Our solution, KARPET, carefully integrates aggressive pruning that leverages the acyclic nature of the query, and incremental guided search. It enables us to prove strong non-trivial time and space guarantees, which is generally considered very hard for this type of graph search problem. Through experimental studies we show that KARPET achieves running times in the order of milliseconds for tree patterns on large networks with millions of nodes and edges.Comment: To appear in WWW 201

    The Best Trail Algorithm for Assisted Navigation of Web Sites

    Full text link
    We present an algorithm called the Best Trail Algorithm, which helps solve the hypertext navigation problem by automating the construction of memex-like trails through the corpus. The algorithm performs a probabilistic best-first expansion of a set of navigation trees to find relevant and compact trails. We describe the implementation of the algorithm, scoring methods for trails, filtering algorithms and a new metric called \emph{potential gain} which measures the potential of a page for future navigation opportunities.Comment: 11 pages, 11 figure
    • …
    corecore